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1 Heat Conduction

Temperature gradient and heat flux. A temperature gradient produces a flux of heat as
the heat flows from hot to cold. The rate at which this flow occurs is determined by the
material property called the thermal conductivity, k. The empirical observation that the
flux is linear in the gradient is known as Fourier’s law of heat conduction

q = −kdT
dx

Fourier’s law of heat conduction (1)

in which q is the heat flux, energy per area per time, x is spatial position, and T is temper-
ature. Notice the negative sign is required so that the heat flows from hot to cold.

Energy and Energy balance. Ignoring the kinetic and potential energies of the system, we
consider the system total energy to be only the internal energy, denoted by U , which is the
internal energy per volume. Consider the slab geometry depicted in Figure 1. If we take
a small volume element of constant cross-sectional area A and width ∆x, we can write a
balance on the energy contained in this volume element. The energy changes due to heat
conducted into the element through the face at location x and the heat conducted out of
the element through the face at location x +∆x

∂ (UA∆x)
∂t

= qA
∣∣
x − qA

∣∣
x+∆x

∗See Bird, Stewart, and Lightfoot (2002, Ch. 12, 19)
†rawlings@engr.wisc.edu
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Figure 1: One-dimensional heat conduction in the slab geometry. The right-hand side shows
a volume element considered in the energy balance.

Dividing both sides by A∆x and rearranging gives

∂U
∂t
= − q

∣∣
x+∆x − q

∣∣
x

∆x

and taking the limit as ∆x → 0 gives

∂U
∂t
= − ∂

∂x
q (2)

For a single-phase system, the temperature, pressure, and chemical composition determine
all intensive properties of the system, including the internal energy

U = U(T , P, cj) (3)
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Changes in internal energy can be computed from changes in the temperature, pressure
and chemical composition by

dU =
(
∂U
∂T

)
P,cj
dT +

(
∂U
∂P

)
T ,cj
dP +

∑
j

(
∂U
∂cj

)
T ,P,ck

dcj

For the heat conduction process, we assume the pressure and chemical composition do not
vary, so dT and dcj are zero. The change in internal energy with temperature at constant
pressure and composition is the definition of the (constant pressure) heat capacity, ĈP

ĈP =
(
∂U
∂T

)
P,cj

The change in internal energy is therefore given by the simple expression

dU = ρĈPdT

So we have for the time derivative
∂U
∂t
= ρĈP

∂T
∂t

Substituting this relation for the internal energy and Fourier’s law of heat conduction, Equa-
tion 1, for the flux into the energy balance, Equation 2, gives the heat conduction equation

ρĈP
∂T
∂t
= ∂
∂x

(
k
∂T
∂x

)
If we next assume constant thermal properties we can take k outside the derivatives and
we obtain

ρĈP
∂T
∂t
= k∂

2T
∂x2

heat equation (4)

Equation 4 is known as the heat equation. We next consider dimensionless variables and
derive a dimensionless version of the heat equation.

Example 1: Dimensionless variables

A solid slab of width 2b is initially at temperature T0. At time t = 0, the surfaces at x = ±b
are suddenly raised to temperature T1 and maintained at that temperature.

It is often convenient to create dimensionless variables before solving a problem. The
benefit is often that many of the physical parameters can be combined into a smaller num-
ber of dimensionless parameters that describe the phenomenon of interest.

Choose dimensionless temperature, time, and position variables and rewrite the heat
equation in the dimensionless variables.
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Solution

The physical parameters appearing in the heat equation with the given boundary conditions
are

Parameter Units
T0, T1 K
b l
k energy/(t l K)
ρ m/l3

ĈP energy/(m K)

We have three variables in the problem, the dependent variable T and the two independent
variables, x and t.

Choosing dimensionless variables. We nondimensionalize each of these variables in turn.
First consider T . Denote dimensionless temperature by Θ, and define it as follows

Θ = T − T0

T1 − T0

The slab initial condition, T = T0 translates to the dimensionless equation Θ = 0. If the
temperature reaches T = T1, the corresponding dimensionless temperature is Θ = 1.

Next consider the spatial position x. Denote dimensionless position as ξ, and define it
as follows

ξ = x
b

The two boundaries of the slab are at x = ±b, which corresponds to ξ = ±1.
Finally consider the time t. Let τ denote a dimensionless time. Time is perhaps the

least obvious variable to make dimensionless. But we see that since time appears explicitly
in the thermal conductivity parameter k, we can use the other parameters to cancel out the
other units. By inspection we see that the grouping k/(ρĈPb2) has units of 1/t. So we can
define dimensionless time by

τ = k
ρĈPb2

t

Transforming the differential equation and boundary conditions. Given the dimension-
less variables, we now wish to transform the heat equation into a dimensionless heat equa-
tion for Θ(ξ, τ). First substitute the dimensionless variables into the heat equation to
obtain

ρĈP
∂ ((T1 − T0)Θ+ T0)

∂
(
ρĈPb2

k τ
) = k∂

2 ((T1 − T0)Θ+ T0)
∂(bξ)2

We next note that we can pass the constant parameters outside the derivative and that the
derivative of a constant parameter is zero, or,

∂(c1x + c2) = c1∂x ∂2(c1x + c2) = c1∂2x
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Using this fact to simplify the previous equation gives

k
b2
(T1 − T0)

∂Θ
∂τ
= k
b2
(T1 − T0)

∂2Θ
∂ξ2

Simplifying this result gives the dimensionless heat equation

∂Θ
∂τ
= ∂

2Θ
∂ξ2

dimensionless heat equation

Notice that no parameters appear in the dimensionless heat equation. We will see shortly
why that provides a big advantage. Now we transform the boundary conditions. These are
given in the problem statement as follows

T(x, t) = T0 at t = 0 − b < x < b
T(x, t) = T1 at t > 0 x = ±b

We substitute the dimensionless temperature and position variables into these statements
to obtain

(T1 − T0)Θ(ξ, τ)+ T0 = T0 at τ = 0 − 1 < ξ < 1

(T1 − T0)Θ(ξ, τ)+ T0 = T1 at τ > 0 ξ = ±1

Simplifying these relations give

Θ(ξ, τ) = 0 at τ = 0 − 1 < ξ < 1

Θ(ξ, τ) = 1 at τ > 0 ξ = ±1

Notice the boundary conditions also contain no physical parameters. In summary, the
complete model in dimensionless variables is given by

∂Θ
∂τ

= ∂2Θ
∂ξ2

Θ(ξ, τ) = 0 at τ = 0 − 1 < ξ < 1

Θ(ξ, τ) = 1 at τ > 0 ξ = ±1

When we solve this equation once, we have solved the problem for all parameter values:
k,ρ, ĈP , T0, T1, b. That provides a tremendous savings.

�

Example 2: Heating of a finite slab1

A solid slab of width 2b is initially at temperature T0. At time t = 0, the surfaces at x = ±b
are suddenly raised to temperature T1 and maintained at that temperature. Find T(x, t).
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Figure 2: Temperature profile at several times during heating of a slab; various kt/(ρĈPb2).

Solution

Dimensionless variables.

θ = T − T0

T1 − T0
ξ = x

b
τ = kt

ρĈPb2

Partial differential equation:

∂Θ
∂τ
= ∂

2Θ
∂ξ2

Initial condition:

at τ = 0, Θ = 0 for − 1 < ξ < 1

Boundary condition:

at ξ = ±1, Θ = 1 for τ > 0

Figure 2 shows the temperature profile at various times. �

1See also Bird et al. (2002, Example 12.1-2)
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Figure 3: Temperature profile of the semi-infinite slab at different τ = kt/(ρĈP).

Example 3: Heating of a semi-infinite slab2

A semi-infinite solid slab is initially at temperature T0. At time t = 0, the surface at x = 0
is suddenly raised to temperature T1 and maintained at that temperature. Find T(x, t).

Solution

Define dimensionless temperature Θ = (T − T0)/(T1 − T0) and new time variable τ =
kt/(ρĈP), which has units of (length)2. Notice we cannot make length dimensionless be-
cause we have no length scale in a semi-infinite solid.

Partial differential equation:

∂Θ
∂τ
= ∂

2Θ
∂x2

Initial condition:

at τ = 0, Θ = 0 for 0 < x <∞

Boundary condition:

at x = 0, Θ = 1 for τ > 0

2See also Bird et al. (2002, Example 12.1-1)
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Change of variable that maps x ∈ (0,∞) to z ∈ (0,1)

z = x
x + 1

x = z
1− z

zx =
1

(1+ x)2
zx = (1− z)2

Chain rule once

Θ(x, t) = Θ(x(z), t) = Θ̃(z, t)
Θx = Θ̃zzx
Θx = Θ̃z(1− z)2

Chain rule again

Θxx =
(
Θ̃zz(1− z)2 − 2(1− z)Θ̃z

)
(1− z)2

Θxx =
(
Θ̃zz(1− z)− 2Θ̃z

)
(1− z)3

Transformed partial differential equation

Θ̃t =
(
Θ̃zz(1− z)− 2Θ̃z

)
(1− z)3

with boundary conditions

Θ̃(z,0) = 0 0 < z < 1

Θ̃(0, τ) = 1 τ > 0

Notice there is only a single boundary condition at z = 0 for a semi-infinite slab.
Figure 3 shows the temperature profile at various times. �

Heat transfer coefficient. If we imagine immersing a spherical body at a uniform temper-
ature into a fluid held at a hotter temperature, we require the temperature of the sphere’s
outer surface to calculate the temperature profile. In Examples 2 and 3 we solved for the
temperature profile under the assumption that the outer temperature jumped instanta-
neously from its initial temperature to the fluid temperature at t = 0. But this assumption is
rather crude and empirical observations show that the body’s outer temperature increases
smoothly and does not jump instantly to the fluid’s temperature. A more realistic way to
model the outer temperature is through the use of a heat transfer coefficient, h. Empirical
observations generally show that the heat flux is proportional to the temperature driving
force between the bulk fluid temperature and the body’s outer temperature. We define the
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heat transfer coefficient to be this proportionality constant between temperature driving
force and flux

q
∣∣
r=R = −k

∂T
∂r

∣∣∣∣
r=R

= −h(Tb − T |r=R) (5)

in which Tb is the fluid temperature and T |r=R is the spherical body’s outer temperature.
This empirical relationship is also known as Newton’s law of cooling (Bird et al., 2002, p.
322). This relationship serves as the boundary condition on the body’s exterior surface.
Notice this boundary condition is a relationship between the temperature and temperature
gradient at the outer surface of the body and the temperature of the bulk fluid.

We can nondimensionalize this boundary condition as well. In spherical coordinates we
can define dimensionless variables as follows

Θ = T − T0

Tb − T0
ξ = r

R

Notice we now use the fluid bulk temperature Tb in place of the body’s outer temperature
because the bulk temperature is constant, but the body’s outer temperature is now changing
with time given the new boundary conditions. Substituting these relations into Equation 5
gives

−k
(
Tb − T0

R

)
∂Θ
∂ξ

∣∣∣∣∣
r=R

= −h((Tb − T0)− ((T |r=R − T0))

in which we have added and subtracted T0 from the right-hand side. Rearranging this
equation gives

∂Θ
∂ξ

∣∣∣∣∣
ξ=1

=
(
hR
k

)
(1−Θ(1, t)) heat transfer boundary condition (6)

Notice the group hR/k is a dimensionless heat transfer coefficient. The dimensionless heat
transfer coefficient is also known as the Nusselt number (Bird et al., 2002, p. 322).

∂Θ
∂ξ

∣∣∣∣∣
ξ=1

= Nu(1−Θ(1, t))

in which

Nu =
(
hR
k

)
Nusselt number

2 Mass diffusion

3 The Collocation Method for solving PDEs

In the collocation method, we approximate a function by passing a polynomial through
values of the function at selected points. The selected points are known as collocation
points. The locations of the collocation points have a large impact on how well the method
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ri
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∑
j
Aijc(rj)

Figure 4: Function c(r) and its values at five collocation points, nc = 5. Derivatives and
integrals of the polynomial interpolant are linear combinations of the function values at
the points.

works. Evenly spaced points, which seems a natural first choice, turns out to have mediocre
properties. Choosing the points as zeros of a member of a family of orthogonal polyno-
mials turns out to have much better properties. This choice is referred to as orthogonal
collocation.

Figure 4 shows values of a function c(r) at five collocation points. The function is ap-
proximated by passing a polynomial through these points. To solve differential equations
and boundary-value problems (BVP), we first compute the required derivatives of the poly-
nomial approximation. We then find the values of the function such that the differential
equation is satisfied at the collocation points. If we increase the number of collocation
points, nc , we require the differential equation to be satisfied at more locations, and we
obtain a more accurate solution.

The derivatives and integrals of the polynomial interpolant can be computed as linear
combinations of the values at the collocation points

dc
dr

∣∣∣∣
ri
=

nc∑
j=1

Aijc(rj)

d2c
dr 2

∣∣∣∣∣
ri
=

nc∑
j=1

Bijc(rj)

∫ 1

0
f(r)dr =

nc∑
j=1

Qjf(rj)
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To obtain the locations of the collocation points and derivatives and integral weighting
matrices and vectors, we use the function colloc, based on the methods described by
Villadsen and Michelsen (1978).

[R A B Q] = colloc(npts-2, ’left’, ’right’);

The strings ’left’ and ’right’ specify that we would like to have collocation points at
the endpoints of the interval in addition to the zeros of the orthogonal polynomial. We
solve for the concentration profile for the reaction-diffusion problem in a catalyst pellet to
illustrate the collocation method.

Example 4: Single-pellet profile

Consider the isothermal, first-order reaction-diffusion problem in a spherical pellet

1
r 2

d
dr

(
r 2 dc
dr

)
− Φ2c = 0 (7)

c = 1, r = 3

dc
dr
= 0, r = 0

The effectiveness factor is given by

η = 1
Φ2

dc
dr

∣∣∣∣
r=3

1. Compute the concentration profile for a first-order reaction in a spherical pellet. Solve
the problem for φ = 10.

2. Plot the concentration profile for nc = 5, 10, 30 and 50. How many collocation points
are required to reach accuracy in the concentration profile for this value of Φ.

3. How many collocation points are required to achieve a relative error in the effective-
ness factor of less than 10−5?

Solution

First we perform the differentiation in Equation 7 to obtain

d2c
dr 2

+ 2
r
dc
dr
− Φ2c = 0

We define the following Octave function to evaluate this equation at the interior collocation
points. At the two collocation endpoints, we satisfy the boundary conditions dc/dr = 0 at
r = 0 and c = 1 at r = 3. The function is therefore
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Figure 5: Dimensionless concentration versus dimensionless radial position for different
numbers of collocation points.

function retval = pellet(c)
global Phi A B R n

%% differential equation at col pts
retval = B*c .+ 2*A*c./R .- Phi^2*c;

%% overwrite ends with boundary conditions
retval(1) = A(1,:)*c;
retval(n) = 1 - c(n);

Figure 5 shows the concentration profiles for different numbers of collocation points. We
require about nc = 30 to obtain a converged concentration profile. Figure 6 shows the
relative error in the effectiveness factor versus number of collocation points. If one is only
interested in the pellet reaction rate, about 16 collocation points are required to achieve a
relative error of less than 10−6. �

4 Implicit Differential Equations and Differential-Algebraic Equations

Some models require a more general structure than the ODE,

dx/dt = f (x, t)

12
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Figure 6: Relative error in the effectiveness factor versus number of collocation points.

Often we have combinations of differential and algebraic equations, known as differential-
algebraic equations (DAEs). To address these models, consider the more general form of
implicit ODEs

0 = f (dx/dt,x, t)

Both DAEs and ODEs can be considered special cases of this structure. Brenan et al. Bre-
nan, Campbell, and Petzold (1989) provide further reading on existence and uniqueness of
solutions to these models, which are considerably more complex issues than in the case of
simple ODEs. Initial conditions are required for dx/dt as well as x in this model,

dx
dt
(t) = ẋ0 x(t) = x0, at t = 0

Petzold has provided a numerical package, dassl, to compute solutions to implicit differ-
ential, and differential-algebraic equations. The main difference between using dassl and
lsode is the form of the user-supplied function defining the model. A second difference
is that the user must supply ẋ0 as well as x0.

In Matlab, the program ode15i solves implicit differential equations. The following
example shows how to use ode15i to solve implicit differential equations, in this case
differential-algebraic equations.

13
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Example 5: Quasi-steady state assumption gives rise to DAEs

Consider the following simple series reactions

A
k1-→ B

B
k2-→ C

The full set of differential equations for a well-mixed reactor are

dcA
dt

= −r1 = −k1cA

dcB
dt

= r1 − r2 = k1cA − k2cB

dcC
dt

= r2 = k2cB

When the rate constants for production of a species are small compared to the rate con-
stants for its removal, we can reduce the model using what is known as the quasi-steady-
state assumption. In this example let’s assume that k1 � k2, so species B is a highly
reactive intermediate. Then, instead of solving B’s differential equation, we wish to sim-
plify the model by assuming the B concentration equilibrates immediately to its steady-state
value given by setting its time derivative to zero or

k1cA − k2cB = 0

We replace the differential equation for B with this algebraic constraint. So for the reduced
model, we solve the DAE model

dcA
dt

= −r1 = −k1cA

0 = r1 − r2 = k1cA − k2cB
dcC
dt

= r2 = k2cB

The QSSA reduced model consists of two differential equations and one algebraic equation
instead of the full model’s three differential equations.

(a) Solve the full model and plot cA, cB , cC versus time using for the following parameters

k1 = 1 k2 = 10 cA0 = 1 cB0 = 0 cC0 = 0

(b) Solve the QSSA reduced model for the same parameter values. Note however that you
need to find a value of cB0 that is consistent with the algebraic equation at t = 0 or
the DAE solver may fail.

14
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Figure 7: The solution to the full model for the series reaction A → B → C; ODE model.
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Figure 8: The solution to the reduced QSSA model; DAE model.
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Solution

(a) Figure 7 shows the solution to the full model. We use the following call to the ODE
solver ode15s and the following function rates to evaluate the differential equations.

function dcdt = rates(t, x)
global k1 k2
ca = x(1); cb = x(2); cc = x(3);
r1 = k1*ca; r2 = k2*cb;
dcdt = [-r1; r1-r2; r2];

[tout, x] = ode15s (@rates, time, x0, opts);

(b) Figure 8 shows the solution to the QSSA model. Notice that the intermediate B is
highly reactive and present only in small concentration compared to the reactant A
and main product B. Also, we see that the full model with three ODEs shows the rapid
approach of species B to its quasi-steady-state value. Using the reduced QSSA model
removes this transient and species B jumps instantly to its quasi-steady-state value.
The small difference in B’s dynamics has no noticeable impact on the behavior of A
and C. For these rate constant values (k1 = 1, k2 = 10, k1 � k2), the QSSA provides
an accurate reduced model.

We use the following call to the DAE solver ode15i and the following function qssa
to evaluate the residuals of the DAEs. Notice the similarities and differences between
the functions qssa and rates.

function resid = qssa(t, x, xdot)
global k1 k2
ca = x(1); cb = x(2); cc=x(3);
cadot = xdot(1); cbdot = xdot(2); ccdot = xdot(3);
r1 = k1*ca; r2 = k2*cb;
resid = [-cadot - r1; r1 - r2; -ccdot + r2];

end

[tout, x] = ode15i (@qssa, time, x0, xdot0, opts);

�
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5 Automatic Stopping Times for Differential Equations

We often wish to stop ODE solvers when certain conditions are met. Two examples are
when we have reached a certain conversion, and when we have created a new phase and
need to change the ODEs governing the system.

In Matlab we tell the ODE solver to terminate the integration by setting the ’Events’
flag as follows. Recall we always tighten the default ODE solver error tolerances as well.
We can do both in one call to opts

tol = sqrt(eps);
opts = odeset (’Events’, @stoptime, ’AbsTol’, tol, ’RelTol’, tol);

The user then provides a function stoptime and the ODE solver stops when this function
reaches zero. Consider Example 1 of the “Chemical kinetics in well-mixed reactors” module.
Figure 5 of that module shows the mass of Ra, Rn, He, and Po versus time for the kinetic
mechanism

Ra -→ Rn+He

Rn -→ Po+He

Say we want the ODE solver to find the time at which Ra reaches a given value. If Ra is the
first value in the x vector of differential equations, then the stoptime function is

function [fcnval, isterm, dir] = stoptime(t, x)
global Ravalue
fcnval = x(1) - Ravalue;
isterm = 1;
dir = 0;

The time at which this function reaches zero is then reported back by ode15s in the last
value of vector tout

[tout, x] = ode15s (@rates, time, x0, opts);

Notice that if the event is detected during the ODE solution, then the vector of solution times
tout returned by the ODE solver is different then the user-requested vector of solution
times time. The tout vector is a truncated version of time with the event time as the final
value in the vector. Try the command doc odeset at the Matlab command line if you
require more information about setting the ’Events’ flag.

6 Exercises
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Figure 9: The function sin 2πx and 10 collocation points.

Exercise 1: Checking the derivative formulas. Oscillating function

Consider the following function on the interval 0 ≤ x ≤ 1

y(x) = sin 2πx

Note that as shown in Figure 9 this function does not resemble a polynomial.
So let’s examine how accurately the polynomial collocation procedure can evaluate the

first and second derivatives. Choose n = 10 collocation points on the x interval.

(a) Evaluate the collocation approximation Yi = y(xi), at the n xi collocation points.
Plot y(x) and Yi versus x. You should obtain a plot similar to Figure 9.

(b) Next differentiate the function y(x) and plot the analytical result versus AY at the
collocation points. Compute the relative errors at the collocation points and plot this
result.

(c) Next take the second derivatives of the function y(x) and plot the analytical result
versus BY at the collocation points. Compute the relative errors at the collocation
points and plot this result.

(d) Repeat these steps for n = 20 collocation points.
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Figure 10: The function e−10x and 10 collocation points.

Exercise 2: Checking the derivative formulas. Exponential function

Repeat Exercise 1 but use the function

z(x) = e−10x

shown in Figure 10. Notice this function also does not resemble a polynomial.
Which function appears to be more difficult to approximate with polynomials, sin 2πx

or e−10x? Why?

Exercise 3: Stopping conditions for radioactive decay reactions

Consider again the two radioactive decay reactions of Example 1 of the “Chemical kinetics
in well-mixed reactors” module.

Ra -→ Rn+He

Rn -→ Po+He

(a) Use an ODE solver to find the time at which the Ra mass reaches half of its initial
value. Plot Ra, Rn, He, Po versus time up to this time.

(b) Compare the value reported by the ODE solver to the half life given in the problem.
What is the relative error in the ODE solver’s value? If you wanted more accuracy in
the ODE solver’s reported time, how would you obtain it?
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R

Figure 11: Model the stuffed turkey as a sphere filled with water.

Exercise 4: Heat equation with an insulated end

Consider again the heating of the slab as in Example 2, but replace the boundary condition
at x = −b with an insulated boundary. An insulated boundary does not allow any heat flux
so we have

q = k∂T
∂x
= 0

(a) Replace the boundary condition T = T1at x = −b with this zero derivative condition
and resolve the problem. Note you will require a DAE solver for this problem. Plot
the temperature profile versus time at the same times as shown in Example 2.

(b) Does the slab heat up more quickly or more slowly with the insulated end. Explain
why.

Exercise 5: Cooking the turkey3

For heat transfer and cooking purposes, consider modeling a stuffed turkey as a sphere
filled with water as depicted in Figure 11. The oven is set at 325◦F. Assume the turkey’s
outer temperature is 50◦F lower than the oven temperature. The turkey is finished cooking
when the center temperature reaches 180◦F.

(a) Write out the dimensionless heat equation in spherical coordinates starting with the
dimensional heat equation in spherical coordinates

ρĈP
∂T
∂t
= 1
r 2

∂
∂r

(
r 2k

∂T
∂r

)
(8)

Convenient dimensionless variables are

Θ = T − T0

T1 − T0
ξ = r

R
τ = kt

ρĈPR2

3See also Bird et al. (2002, Problem 12B.7)
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in which T0 is room temperature, T1 is the turkey’s outer temperature during cooking,
and R is the sphere radius.

What is the dimensionless center temperature when the turkey is finished cooking?

(b) Solve the dimensionless heat equation with a stopping condition to find the time when
the center temperature reaches the value found in the previous part. Note you will
require a DAE solver for this problem.

What is the dimensionless stopping time when the turkey is finished cooking?

Plot the temperature profile in the sphere at this dimensionless stopping time?

(c) Prepare a cooking time versus turkey weight chart over the turkey weight range 10 to
25 pounds. How many times must you solve the heat equation to prepare this plot?

Exercise 6: Turkey with increased heat transfer resistance

Resolve Exercise 5 assuming that the outer turkey temperature is 75◦F lower than the oven
temperature.

Exercise 7: Using a heat transfer coefficient

Consider using the heat transfer coefficient to model the outer boundary of the sphere in
Exercise 5.

(a) Solve the dimensionless version of Equation 8 with the boundary condition given in
Equation 6. Prepare the cooking chart for the following dimensionless heat transfer
coefficient

hR
k
= 3

Does the cooking time increase or decrease compared to the chart in Exercise 5?

(b) Plot the sphere’s outer temperature versus time.

(c) Repeat the calculations for
hR
k
= 5

Exercise 8: Cooling off the beer

Winter has returned to Madison. You’ve invited friends over for one last party before exams,
and are almost done setting up when suddenly you realize that the beer is still sitting in
your closet at room temperature. You need to chill it quickly, and so decide to fill your
bathtub with ice water and throw the drinks in there to speed up the cooling process. Your
roommate suggests putting the beer outside on the balcony instead. Since your roommate
is a philosophy major, you naturally question his judgment. “Look,” you tell him, “the
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Figure 12: Model the beer can as a cylinder filled with water.

surrounding water in the tub gives a way better heat transfer coefficient than air. The
Nusselt number’s enormous! The bathtub is the way to go.”

“Well, I don’t know what a Nusselt is,” your roommate replies, “but it’s zero degrees
outside! The balcony’s going to be faster for sure.” Exasperated, you say, “OK, Plato, why
don’t you work out whether or not the beer exists and let me take care of the cooling,
alright? I’ve taken CBE 255; I know what I’m doing.”

Solve the heat transfer equation for these two situations. To simplify the problem let’s
model the can of beer as a semi-infinite cylinder as depicted in Figure 12. The heat equation
for this geometry is

ρĈP
∂T
∂t
= 1
r
∂
∂r

(
rk
∂T
∂r

)
(9)

Model the heat transfer as pure heat conduction and ignore any fluid motions that might
take place inside the can during the cooling process.

(a) Write down the dimensionless heat equation for this problem. So we are all consistent,
define the dimensionless temperature as

Θ = T − Tb
T0 − Tb

in which T0 is the initial temperature and Tb is the fluid temperature in which the
cylinder is immersed. What do you use for dimensionless time τ and radius, ξ?

(b) Show that the initial condition is Θ(ξ,0) = 1 for both the bathtub and the balcony.

Show that the outer boundary condition is

∂Θ
∂ξ
= −NuΘ τ > 0 ξ = 1

What is your definition of Nu?

What is the second boundary condition?
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(c) Find the final time (in minutes) for the center of the cylinder to reach 45◦F for both
cases. Your guests are arriving in 45 minutes. Are you going to make it?

Here are the rest of the data

Tbalcony = 0◦F Nubalcony = 0.8
Tbathtub = 32◦F Nubathtub = 8

R = 3 cm

(d) Plot the transient can temperature profiles for both cases on separate plots.

Exercise 9: Using Matlab’s pdepe to solve PDEs

Solve Example 2 using pdepe and produce a new version of Figure 2. Compare to the version
given in the module.

Exercise 10: More pdepe

Solve Exercise 4 using pdepe. (Ignore the remark about a DAE solver.)

Exercise 11: One more pdepe

Consider again Example 2, but modify the problem such that the boundary conditions on
both surfaces of the slab involve a heat transfer coefficient characterized by a Nusselt
number equal to 2.

Solve the modified problem using pdepe. Generate a plot of the solution of the same
form as Figure 2 and compare.

Exercise 12: Carbon dioxide adsorption in a zeolite bed

The following isotherm equation has been fitted to data for adsorption of CO2 on zeolite
5A adsorbent at 50◦C:

w = wmax(KP)b

1+ (KP)b

Here, w denotes mass of CO2 adsorbed per mass of adsorbent in equilibrium at a CO2

partial pressure of P . Parameters wmax = 0.2079, K = 9.6409 bar−1, and b = 0.7488.
A mixture of CO2 and inert gas is passed through a bed of this adsorbent. The bed

initially contains a low CO2 loading of w = 0.0001 throughout the bed. The CO2 partial
pressure in the inlet gas is approximately 0.0937 bar, which corresponds to a value of
win = 0.10 in equilibrium with the adsorbent. The inlet gas temperature is 50◦C. In the
following it will be assumed that the bed temperature is controlled and remains constant
at 50◦C.

The behavior of the bed is modeled by the following PDE.

∂w
∂t

= −
(
M
ρsA

)
∂ṅA

∂x
+ D∂

2w
∂x2
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x is the distance along the bed from the feed end and t is time. M = 44.01 kg/kmol is the
molecular weight of CO2, ρs = 700 kg/m3 is the bulk density of the adsorbent packed in
the bed, and A = 1.0×10−3 m3 is the cross-sectional area of the bed. The length of the bed
L = 1 m. Constant D quantifies the amount of axial dispersion in the bed.
ṅA is the molar flowrate of CO2 through the bed, which is related to the molar flowrate

ṅI of the inert gas by

ṅA = ṅI

(
P

Ptot − P

)
The total pressure of the gas flowing through the bed is approximately constant at Ptot =
1 bar. By combining the above relation for ṅA with the isotherm, the governing PDE can be
written

∂w
∂t

= −
(
M
ρsA

)(
dṅA

dP

)(
dw
dP

)−1

· ∂w
∂x

+ D∂
2w
∂x2

If the isotherm is solved for P as a function of w, then the terms in parentheses can be
computed as functions of w.

(a) Solve this PDE model using pdepe. Use the term described as “s(x, t,u, ∂u∂x )” in the

Matlab help to represent the term involving ∂w
∂x . Set the term “f(x, t,u, ∂u∂x )” equal

to D · ∂u∂x to represent the term involving ∂2w
∂x2 .

Run the model with a flowrate ṅI = 2.9×10−3 kmol/min for a time duration of tf =
5 min. Set xmesh to get a grid of 101 points along the length of the bed, and set
D = 0.003.

(b) Plot the solution time trajectories for all of thexmesh points using plot(tspan,sol).

(c) Plot the time trajectories of w(x, t) for the five x values 0, 0.25, 0.5, 0.75, and 1.0.

(d) Plot the function w(x, t) for the 11 values of time ranging from t = 0 to t = 5 min in
0.5 min intervals.

(e) Compare the results obtained withD = 0.003 with the results produced withD = 0.03.

(f) Repeat the above, changing the value of D to 0.001 and 0.0003.

Exercise 13: Desorption of carbon dioxide

Consider again the CO2 adsorption bed model in Exercise 12 parts (a)–(d). After the ad-
sorption process in part (a) is finished and the adsorbent is loaded with CO2, the bed is
regenerated by passing a CO2-lean stream through the bed. Model the desorption process
by setting the initial state of the bed equal to the final state that resulted at the end of
the adsorption process. The CO2-lean stream enters at x = 0 with an inert gas flowrate
ṅI = 2.9×10−3 kmol/min and a CO2 partial pressure equivalent to an equilibrium adsorp-
tion level ofwlean = 0.02. Make a plot of the CO2 mole fraction in the exit gas stream versus
time. Approximately how long does it take to desorb most of the CO2?
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