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1 Equilibrium-based Separations

Many common separation operations are based on differences in the phase equilibrium
properties of the components. In a multicomponent system with Nc components, the dis-
tribution of each component i between two phases in equilibrium can be expressed in terms
of its mole fractions yi, xi in each phase and the equilibrium mole fraction ratio Ki:

yi = Kixi i = 1, . . . ,Nc (1)

Evaluating Ki. The values Ki = Ki(T , P,y1, . . . , yNc , x1, . . . , xNc) in (1) in general are com-
plicated functions of temperature, pressure, and composition. In practice they are obtained
from thermodynamic models, typically expressed in terms of activity and/or fugacity co-
efficients. In the case of vapor-liquid equilibrium, for example,

Ki =
γi(T , P, , x1, . . . , xNc) · f 0

i (T , P)
φV(T , P,y1, . . . , yNc) · P

=
φL
i (T , P, , x1, . . . , xNc)
φV(T , P,y1, . . . , yNc)

(2)

The equations and the component-specific parameters needed for these detailed models
are contained in specialized programs such as Aspen. However, for preliminary work it
may be sufficient, and more convenient, to employ more simplified methods. If pressures
are low, we may approximate φV

i ≈ 1 and f 0
i ≈ P sat

i (T), where P sat
i (T) is the vapor pres-

sure of pure component i. Further, if the components are sufficiently similar in their
intermolecular interactions, the liquid might be approximated as an ideal mixture with

∗See (McCabe, Smith, and Harriott, 2005, Ch. 20-22)
†swaney@engr.wisc.edu
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γi ≈ 1. Alternatively for the case of sparingly dissolved materials (e.g. light gases in liq-
uids), γif 0

i ≈ Hi(T ,xj≠i) ≈ H̄i(T). These approximations correspond to Raoult’s Law and
Henry’s Law, respectively:

KiP É P sat
i (T) or KiP É H̄i(T) (3)

We expect the values of Ki to be strong functions of T in any case, but it is sometimes
adequate to neglect the dependence on composition, as suggested by (3). The righthand
side functions in (3) often are readily found in handbooks, etc.

Single separation stages. Consider first a single vapor-liquid equilibrium stage, where a
feed mixture with composition mole fractions zi, i = 1, . . . ,Nc has a given enthalpy such
that at equilibrium it is partially vaporized as a two phase mixture. The associated mass
balance is

Fzi = Vyi + Lxi i = 1, . . . ,Nc (4)

Here F , V , and L are the total molar flowrates of the feed, vapor phase, and liquid phase
respectively. Summing (4) over i = 1, . . . ,Nc gives the total mass balance, F = V + L.

The accompanying energy balance is

HF = VhV(T , P,y1, . . . , yNc)+ LhL(T , P,x1, . . . , xNc) (5)

HF is the feed total enthalpy while hV and hL are the vapor and liquid molar enthalpies.
If the operating pressure is given, the values of the unknown variables can be com-

puted by simultaneous solution of (1), (4), and (5), along with either one of the following
definitions:

Nc∑
i=1

xi = 1
Nc∑
i=1

yi = 1 (6)

Counting variables and equations shows that only one of the above relations is needed. It
would be redundant to include both of them, since the values Ki used in (1) in fact ensure
that the omitted relation will be satisfied anyway provided that the included relation holds.

Use of mole fractions in a model formulation often makes the degrees-of-freedom ac-
counting obscure. Formulation directly in terms of the conserved quantities may be more
straightforward, since the number of physical conditions is usually easy to identify. In
terms of flows fi = Fzi, vi = Vyi, `i = Lxi, the single equilibrium stage may be formulated
as

fi = vi + `i i = 1, . . . ,Nc (7)

yi = Ki(T , P,y1, . . . , yNc , x1, . . . , xNc) · xi i = 1, . . . ,Nc (8)

HF =
(∑
j
vj
)
· hV(T , P,y1, . . . , yNc)+

(∑
j
`j
)
· hL(T , P,x1, . . . , xNc) (9)

where yi =
vi∑
j vj

, xi =
`i∑
j `j
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The (2Nc + 1) physical relations are equal in number to the variables {vi, `i, T}.
Mole fractions are used in the following, since for the particular case developed it leads

to a very compact formulation.

The “Constant Relative Volatility” (CRV) approximation. When considering systems of
many equilibrium stages, the analysis can be simplified through the concept of “relative
volatility”. This approximation is motivated by the observing that even though the KiP
values are strong functions of temperature, over modest temperature ranges the curves of
lnKi vs. T for the different components i are often approximately parallel to each other.
While the values of the Ki will change, their relative values Ki/Kj are then roughly constant.

Relative volatilities αi can be defined in either of two ways. In the first way, one com-
ponent i = ref is selected arbitrarily and the volatilities of all components are computed
relative to the reference component:

αi =
Ki
Kref

(10)

The second way uses a mole fraction weighted average as the reference value:

αi =
Ki∑Nc

j=1Kjx̂j
(11)

Note here that the selected composition x̂j used to form the weighted average must be a
constant, not a variable, if the αi are to be regarded as constants. One natural choice is
to take x̂i to be the liquid composition for the particular conditions at which the Ki are
evaluated. For this choice the denominator in (11) sums to unity, giving αi = Ki (evaluated
at fixed conditions). This choice is also convenient when using the approximations in (3),
since thenαi = (KiP)/P . The two equations (10) and (11) give values that differ by the same
constant for all components. This arbitrary scaling is usually of no consequence since only
the ratios between the αi matter in use.

Inverting (10) or (11) and combining with (1) gives

Ki =
αi∑Nc

j=1αjxj
; yi =

αixi∑Nc
j=1αjxj

(12)

The relative volatility form offers little advantage over (1) unless the αi are sufficiently
constant. However, when the approximation is acceptable, (12) gives a particularly simple
way to compute the equilibrium of a stage.

The extent to which the αi are actually independent of temperature (and composition)
will depend on the thermodynamic characteristics of the components involved.

2 Countercurrent Cascades of Stages

The degree of separation achieved by a single equilibrium stage is limited. To achieve
higher degrees of separation, stages may be cascaded in series where the liquid and vapor
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Figure 1: Countercurrent cascade of ideal stages.

streams are in countercurrent flow. Figure 1 shows the manner of interconnection of the
individual stages.

The total feed entering each stage is formed by mixing the liquid stream leaving the
stage above and the vapor steam leaving the stage below. (For vapor-liquid separations the
stages are usually stacked vertically, and are referred to as a “column”.)

The “Constant Molar Overflow” (CMO) approximation. Usually stages operate adiabat-
ically, and the relative amounts of vapor and liquid leaving each stage are determined by
an energy balance around the stage. While the exact balance requires thermodynamic cal-
culations of the enthalpies of the multicomponent streams, it is often adequate for initial
calculations to employ the constant molar overflow assumption. This approximation ig-
nores the sensible heat changes of the streams as their temperatures change, ignores any
heat of mixing, and considers only the latent heats of vaporization or condensation. Fur-
ther, it assumes the molar heats of vaporization for each component are approximately
equal. The energy balance is then quite simple: The total moles of vapor leaving a stage
equals the total moles of vapor entering, and the total moles of liquid leaving equals the
total moles of liquid entering. Thus under the CMO assumption the total molar flowrates
can be described by a single pair of variables V and L applying to every stage within the
cascade.

Stage calculations. Numbering the stages in the direction of vapor flow, and using super-
scripts to label the stage number, the component mass balances assuming CMO around
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any stage n in the cascade become:

Vyni − Lxn+1
i = Vyn−1

i − Lxni = di (13)

The balance written in this way shows the net difference flow into the stage from below
equals the net difference flow out from the stage to above. This difference flow must in
fact be the same for all stages in the cascade, and so may be denoted by the single set of
flow variables di.1 Summing (13) over i = 1, . . . ,Nc also shows that V = L+

∑Nc
i=1 di is not

an independent quantity and may be calculated from L and di.
If we introduce the CRV approximation (12) into (13) and arrange xn+1

i on the lefthand
side we can eliminate the vapor compositions and describe the stage behavior in terms of
the liquid compositions only.

xn+1
i = V

L
·

αixni∑Nc
j=1αjx

n
j
− di
L

(14)

The behavior of the cascade is given by the set of finite difference equations in (14) for
i = 1, . . . ,Nc with n ranging over the number of stages.

3 Distillation columns

Continuous distillation is often performed in columns of countercurrent stages. The actual
stages do not usually achieve complete vapor-liquid equilibrium, but nevertheless for initial
design studies they may be modeled in an approximate way by using an adjusted number
of equilibrium stages that is equivalent in effect to the actual number of nonequilibrium
stages.

A simple distillation column has one feed and two products, and utilizes two counter-
current column sections configured in the flow pattern shown in Figure 2. The top section
is termed the rectification section (R), with stages numbered upward from 1 toNR. The bot-
tom section is termed the stripping section (S), with stages numbered upward from −NS to
−1. The balances corresponding to the combined system are developed as follows.

Consider the case where the feed is a saturated liquid with flowrate F and composition
xF
i . Figure 2 shows the common case where a total condenser and a pump-through reboiler

are used. The composition of the distillate (top) product equals the composition of the
reflux liquid returned to the top section, and the composition of the bottoms product
equals the composition of the vapor returned to the bottom column section. Also, the
distillate and bottoms product flows equal the net difference flows dR

i and dS
i through the

rectification and stripping sections, respectively. Note that the values of dR
i are positive,

but the values of dS
i are negative, since the net flow is downward in the lower section.

1The fact that di is constant throughout the cascade is true in general as a consequence of the mass balance.
It does not depend on the CMO assumption.
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−NS

−1

1

NR

FxF Vy0

Vy(−1)
LSx0

LRx1

dR

−dS

Figure 2: Flow pattern of simple one feed, two product distillation column.

6



CBE 255 Staged Separations 2014

The mass balances on the column as a whole are

FxF
i = dR

i + (−dS
i) (15)

dR
i = (V − LR)xNR+1

i (16)

dS
i = (V − LS)x(−NS)

i (17)

The remaining balances are constructed around the feed addition point. In the case of
saturated liquid feed, the vapor rate V is the same in both column sections, but the liquid
rates LR and LS differ such that LS = LR + F . The balances for this case become

LRx1
i + FxF

i = LSx0
i (18)

Vy0
i = Vy

(−1)
i (19)

When the feed condition is specified, there are two degrees of freedom in the column
remaining to be specified, corresponding to the vapor rate V generated in the reboiler
and the liquid reflux rate LR returned to the column at the top. If we set fix these two
variables, the remaining variables are determined by the system of equations composed of
(15), (16), (17), (18) together with a series of NR instances of (14) for the rectification stages
and a series of NS instances of (14) for the stripping stages. Counting the variables {dR

i ,

dS
i , x

NR+1
i , x(−NS)

i , x1
i , x0

i }, together with the (NR − 1) and (NS − 1) compositions xni of the
internal stages within each column section, shows that there are (4+NR+NS)Nc unknowns,
matching the number of equations. One might then proceed to set up and solve this set
of simultaneous equations, e.g. via Newton’s method as discussed in Module 4 on Process
Systems Steady-State Modeling and Design.

Solution via “precedence ordering” and “tearing”. While it requires the least thought to
simply collect together a set of simultaneous equations and feed them directly to a solver,
it often pays to analyze the algebraic structure of the problem and set up a more structured
solution approach.

In many problems a simple counting of equations and variables does not guarantee a
valid formulation. This potential difficulty may be seen in the present problem. Observe
that the set of mass balance equations in (19) were omitted from the collected system of
equations described above. Why omit this particular set, and not, for instance, omit the
set in (15) instead? (We could do this by including the set of variables y0 and y(−1), along
with two more sets of equations in the form of (12). This would add 2Nc more variables
and 2Nc more equations to the problem. Equivalently, we could use (12) twice to eliminate
y0 and y(−1) from (19), ending up with a version containing only x0 and x(−1).)

In this example, we could successfully exchange (19) for (15) in the collected system. In
contrast, exchanging (19) for either (16) or (17) or (18) will not work. The resulting system
of equations would be “singular” because the selected equations are not all independent,
leaving the variables underdetermined. Passing such a system to a nonlinear solver such
as fsolve will end in a convergence failure, with little clue as to the source of the difficulty.
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One approach to avoiding such potential traps is to break the equations into smaller
sets which are then solved sequentially. This “hands on” approach can make it easier to
see how the degrees of freedom are structured, so that a workable solution procedure will
be obtained. It is much like the process one would use in organizing a problem to solve
equations on paper. The main idea is to view each set of equations in terms of its possible
sets of “output variables”, i.e. variables that the equations could be solved for, if values for
the other variables were given as inputs. A sequence is then figured out where at each step
an equation set is solved to produce outputs, which then can be used as inputs for other
equation sets in later steps.

For the present problem, we can begin by treating the finite difference equations in (14)
over a column section as one such equation set. Given values for the input variables x1,
the equations can be computed in sequence to produce the output variables xN+1. This
computation is performed by the function cascade developed in Exercise 1.

The structure of the rest of the problem can be seen by constructing the following table
of equations and variables.

Eqn. dR dS xNR+1 x(−NS) x1 x0

(15) ⊗ ⊗
(16) ⊗ ⊗
(17) ⊗ ⊗
(18) ⊗ ⊗ ⊗

R-cascade × ⊗ ×
S-cascade × × ⊗

Here an× indicates the incidence of a variable in an equation such that it is a required input.
An ⊗ indicates those variables that could be assigned as the output from the equation2,
while if not so assigned they remain as inputs.

Sequential solution requires a precedence order such that at each step, calculated values
are known for all inputs to the next equation. One such ordering is show in Figure 3.
Each of the equations in the sequence requires inputs, so there is no simple “once-through”
sequence for this problem. An iterative solution method is required. The approach is to
pick a variable or set of variables such that the remaining other variables can then be
obtained as outputs by following a calculation sequence. The selected variables are termed
“tear” variables, since by “tearing” the connection arrows going into them in Figure 3 the
result gives a once-through calculation. This once-thorough calculation takes values for
the tear variables as input and produces values for the tear variables as output. The once-
through calculation for the overall system can be written

Xtear
out = Foverall

(
Xtear

in

)
(20)

2Here we have elected to consider only output variables that could be obtained explicitly by algebraic re-
arrangement of the equation. The approach may be extended if desired to outputs obtained numerically by
iterative solutions of the individual equation sets. This is not needed here for the CRV-CMO version of the
model. Also see Exercise 7.
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x(−NS) = f17( dS )

dS = f15( dR )

x0 = fS-cascade( dS, x(−NS) )

x1 = f18( x(−N
S), x0 )

xNR+1 = fR-cascade( dR, x1 )

dR = f16( xN
R+1 )

Figure 3: Precedence-ordered sequence. fk(·) denotes the use of equation k to obtain the
output variable.

In Figure 3, if we tear on variables dR, the remaining sequence can be computed. Given an
input value dR

in, the calculation produces output values for all variables, including dR
out.

With Foverall constructed, the solution procedure is completed by solving (20) to find
values Xtear

out = Xtear
in , i.e.

Xtear = Foverall
(
Xtear) (21)

Certain numerical methods specifically treat equations in this “fixed point” form, but by
simply rearranging [

Foverall
(
Xtear)−Xtear ] = foverall

(
Xtear) = 0 (22)

we can apply a general nonlinear equation solver.
Thus the overall distillation column model can be solved by numerical solution of

foverall(dR) = 0. There are only Nc variables to be iterated upon by the solver. It will
be much easier to provide initial guesses for this smaller number of variables, compared to
a simultaneous solution which would need initial guesses for every variable in the problem.
Also, we have some notion of what variable values are “reasonable” for dR

i , since these equal
the distillate product component flows, which we know are some recovery fraction times
the feed flows. It is also worth noting that in many cases narrowing down the number of
variables to be given to the nonlinear iterative solver can improve the chances that it will
converge.

Finally, the above procedure may actually still be quite useful even if it is decided to
solve the entire equation set with a simultaneous solver. It offers a means to verify that
the proposed system of equations are independent and sufficient, and a way to identify the
required input parameters.
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4 Exercises

Exercise 1

Write a Matlab function that calculates the liquid compositions xni on each stage of a
countercurrent column section according to (14), for stages numbered from 1 to N and in-
cluding the inlet composition xN+1

i . The function will take as inputs the liquid composition
x1
i exiting stage 1, the difference flows through the cascade di, V , the relative volatilitiesαi,

and the total number of stages N. The function will return the liquid composition profile
xni in the column section:

function X = cascade( x1, d, V, alpha, N )

Use the function to prepare a plot of the liquid composition for the following column section
case:

i x1
i di αi

1 0.34 0.75 2.0
2 0.25 0.22 1.5
3 0.18 0.02 1.0
4 0.13 0.002 0.67
5 0.10 0.0002 0.50

L = 2.0
N= 8

Exercise 2

Construct a Matlab function

function dR = distil ( feed, V, LR, NR, NS )

to execute the solution procedure for the CRV-CMO distillation column model base on
the tearing and precedence-ordering scheme in Figure 3. Using the cascade function you
developed in Exercise 1 as a building block, write function resid = foverall( dR ) to compute
foverall(dR). Use fsolve to solve the model.

Apply the procedure to solve the following problem, determining the flowrates for each
component in the distillate product. This example takes a feed mixture of ethane, propane,
n-butane, n-pentane, and naphtha, and separates it into a C3- stream and C5+ stream. Molar
flowrates are given for the feed. Relative volatilities were computed at the conditions of
the feed stream as a saturated liquid.

10



CBE 255 Staged Separations 2014

i Component FxF
i αi

1 C2 5 3.2
2 C3 9 1.9
3 C4 6 1.0
4 C5 4 0.58
5 C6+ 76 0.25

V = 35
LR = 21
NR= 4
NS = 5

Try different initial guesses as follows:

1. Devise an initial guess on your own.

2. Use (dR)0 = [4, 8, 2, 0, 0 ].

3. Use (dR)0 = [5, 9, 0, 0, 0 ].

4. Use (dR)0 = [5, 8, 1, 0, 0 ].

5. Use (dR)0 = [2.8, 2.8, 2.8, 2.8, 2.8 ].

6. Use (dR)0 = D · αixF
i∑Nc

i=1 αix
F
i

where D = V − LR. (This uses the known total moles of

distillate and the vapor composition yF
i in equilibrium with the feed.)

Exercise 3

Modify your code in Exercise 2 so that distil also outputs profiles of the compositions of
each component on each stage in the column. Plot these profiles as curves of stage number
vs. liquid mole fraction, where the stage number ranges from (−NS) to (NR + 1).

Exercise 4

Algebraic models involving several variables quite often will have more than one mathemat-
ical solution. Even if a numerical method succeeds at converging to a solution x satisfying
f(x) = 0, that might not be the solution desired. For the distillation model in Exercise 2,
there is another (mathematical, not physical) solution having some negative flowrates.

Sometimes the iterative calculation can be steered to the desired solution by using trans-
formations on the variables. The goal is to keep each actual variable within its desired do-
main (e.g. positive) by giving the solver a surrogate variable ηi to manipulate as it wishes.
However, the surrogate variable is mapped onto the actual variable in such a way that the
actual variable will never be given a value outside of its desired domain. For the distillation
model, the actual variables dR and −dS both need to remain positive. We can accomplish
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this if we keep the distillate fractional recoveries ξi for each component within the range
0 < ξi < 1.3 We can use the following variable transformation:

ηi → ξi =



[
1+ ηi
2+ ηi

]
(ηi ≥ 0)

[
1

2− ηi

]
(ηi < 0)

→ dR
i = (FxF

i ) · ξi (23)

dR
i → ξi = dR

i /(Fx
F
i ) → ηi =



[
1

1− ξi
− 2

]
(1

2 ≤ ξi < 1)

[
2− 1

ξi

]
(0 < ξi < 1

2)
(24)

Here ηi can be allowed to range over the entire real line, but ξi will always be kept within
the range 0 < ξi < 1. The pair dR

i , ηi are one-to-one for fixed feed, so either version can
readily be converted to the other via (23, 24).

Write Matlab functions diR = map( etai, feedi ) and etai = unmap( diR, feedi ) to perform
the mappings in Equations (23,24). Plot each mapping function to test.

Modify your function foverall from Exercise 2 to use these mapping functions so that
fsolve iterates on the values of η instead of dR. Run the model using the various starting
points tried before in Exercise 2.

Exercise 5

Write a function of the form

function LR = reflux( feed, V, key, dkeyR )

that uses your function distil from Exercise 2 to solve for the value of the reflux flowrate
LR needed to obtain a product flowrate for component i = key of value dR

key. Solve the case

in Exercise 2 for key = 4, dR
4 = 0.15. Repeat for dR

4 = 0.08.

Exercise 6

The reflux rate LR is an important decision parameter in distillation design. For a given
separation, there exists a tradeoff between the number of stages used and the amount of
reflux employed.

The “reflux ratio” R = LR/
∑Nc
i=1 d

R
i is a convenient dimensionless measure of the reflux

rate. Consider again the separation in Exercise 5 specified by key = 4, dR
4 = 0.12. Consider

a total number of stagesNtot = NR+NS takingNS = NR. Using the function reflux developed
in Exercise 5, prepare a plot of required R vs. Ntot. Consider the range 6 ≤ Ntot ≤ 30.

Exercise 7

Show how the finite difference equations in (14) can be inverted algebraically to obtained
the explicit output of the variables xni , taking xn+1

i and di as inputs.

3With a finite number of stages the recovery values can never completely reach either zero or one.
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