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1 Introduction

The purpose of process modeling is to predict the behavior of chemical and physical phe-
nomena. More often than not, it is not practical to predict the behaviors involved with ab
initio models. Instead, most process models employ phenomenological models to repre-
sent the complex underlying physical and molecular behavior. These are compact models
giving the required characteristics in a manageable form.

Typical examples of models for intrinsic behavior include those for thermodynamic
properties, transport properties, and chemical kinetic rates. Models are also often used to
embody empirical solutions to complex flow situations, for example the models of volume-
integrated behavior used to predict pressure drops and heat transfer coefficients.

These models by nature rely on empirical data. They involve two components: (1) a
model form, often an algebraic relation, containing one or more adjustable constants re-
ferred to as “parameters”, and (2) the values to be used for these parameters. The parameter
values are adjusted so that the model predictions match the available empirical data. Such
data-based models are sometimes also referred to as “correlations”.

The sections below discuss methods for determining the unknown model parameters
to obtain a good fit between the model predictions and the set of available data. The
first section addresses basic model fitting without statistical arguments. In many cases the
quantity of data available is limited, and the model fitting process relies upon judgment and
physical intuition. When larger quantities of data are available, statistical methods become
useful. These techniques introduce probability arguments to analyze the magnitudes of
the errors, assess models, and predict probable ranges of the parameters.
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2 Random Variables and Probability

Let x be a random variable taking real values and the function F(x) denote the probability
distribution function of the random variable so that

F(a) = Pr(x ≤ a)

i.e. F(x) at x = a is the probability that the random variable x takes on a value less than
or equal to a.

We next define the probability density function, denoted p(x), such that

F(x) =
∫ x
−∞
p(s)ds, −∞ < x <∞ (1)

Also, we can define the density function for discrete (integer valued) as well as continuous
random variables. Alternatively, we can replace the integral in Equation 1 with a sum
over an integer-valued function. The random variable may be a coin toss or a dice game,
which takes on values from a discrete set contrasted to a temperature or concentration
measurement, which takes on a values from a continuous set. The density function has the
following properties

p(x) ≥ 0 all x∫∞
−∞
p(x)dx = 1

and the interpretation in terms of probability

Pr(x1 ≤ x ≤ x2) =
∫ x2

x1

p(x)dx

2.1 Mean and Variance

The mean or expectation of a random variable x is defined as

x =
∫∞
−∞
xp(x)dx (2)

The variance is defined as

var(x) =
∫∞
−∞
(x − x)2p(x)dx

The standard deviation is the square root of the variance

σ(x) =
√

var(x)
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exp
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σ 2

)
. Mean is one and

standard deviations are 1/2, 1 and 2.

2.2 Review of the Normal Distribution

Probability and statistics provide one useful set of tools to model the uncertainty in exper-
imental data. It is appropriate to start with a brief review of the normal distribution, which
plays a central role in analyzing data. The normal or Gaussian distribution is ubiquitous in
applications. It is characterized by its mean, m, and variance, σ 2, and is given by

p(x) = 1√
2πσ 2

exp

(
−1

2
(x −m)2
σ 2

)
(3)

Figure 1 shows the univariate normal with mean zero and unit variance. We adopt the
following notation to write Equation 3 more compactly

x ∼ N(m,σ 2)

which is read “the random variable x is distributed as a normal with meanm and variance
σ 2.” Equivalently, the probability densityp(x) for random variablex is given by Equation 3.

For distributions in more than one variable, we let x be an np-vector and the general-
ization of the normal is

p(x) = 1

(2π)np/2 |P|1/2
exp

[
−1

2
(x −m)′P−1(x −m)

]
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Figure 2: Multivariate normal for n = 2.

in which the np-vector m is the mean and the np × np-matrix P is called the covariance
matrix. The notation |P| denotes determinant of P. We also can write for the random
variable x vector

x ∼ N(m,P)

The matrix P is a real, symmetric matrix. Figure 2 displays a multivariate normal for

P−1 =
[

3.5 2.5
2.5 4.0

]

As displayed in Figure 2, lines of constant probability in the multivariate normal are lines
of constant

(x −m)′P−1(x −m)

To understand the geometry of lines of constant probability (ellipses in two dimensions,
ellipsoids or hyperellipsoids in three or more dimensions) we examine the eigenvalues and
eigenvectors of the P matrix.

2.3 Eigenvalues and Eigenvectors

An eigenvector of a matrix A is a nonzero vector v such that when multiplied by A, the
resulting vector points in the same direction as v, and only its magnitude is rescaled. The
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rescaling factor is known as the corresponding eigenvalue A. Therefore the eigenvalues
and eigenvectors satisfy the relation

Av = λv, v ≠ 0

We normalize the eigenvectors so

v′v =
∑
i
v2
i = 1

The eigenvectors show us the orientation of the ellipse given by the normal distribution.
Consider the ellipse in the two-dimensional x coordinates given by the quadratic

x′Ax = b

If we march along a vector x pointing in the eigenvector v direction, we calculate how far
we can go in this direction until we hit the ellipse x′Ax = b. Substituting αv for x in this
expression yields

(αv′)A(αv) = b

Using the fact that Av = λv for the eigenvector gives

α2λv′v = b

because the eigenvectors are of unit length, we solve for α and obtain

α =
√
b
λ

which is shown in Figure 3. Each eigenvector ofA points along one of the axes of the ellipse.
The eigenvalues show us how stretched the ellipse is in each eigenvector direction.

If we want to put simple bounds on the ellipse, then we draw a box around it as shown
in Figure 3. Notice the box contains much more area than the corresponding ellipse and
we have lost the correlation between the elements of x. This loss of information means we
can put different tangent ellipses of quite different shapes inside the same box. The size
of the bounding box is given by

length of ith side =
√
bÃii

in which
Ãii = (i, i) element of A−1

Figure 3 displays these results: the eigenvectors are aligned with the ellipse axes and the
eigenvalues scale the lengths. The lengths of the sides of the box that is tangent to the
ellipse are proportional to the square root of the diagonal elements of A−1.
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Figure 3: The geometry of quadratic form x′Ax = b.

2.4 Sampling random variables

Often we do not know the probability density of a random variable, but we have collected
samples of the random variable. Given enough samples, we can sometimes approximate
the probability density or any of the properties of the probability density such as the mean
and variance. For example, the Matlab function rand generates samples of a uniformly
distributed random variable on the interval [0,1], and randn generates samples of a nor-
mally distributed random variable with unit variance and zero mean. The Matlab function
hist plots a histogram of the samples.

Example 1: Histogram of samples from a normal density

Use Matlab to generate 10,000 samples of a normally distributed random variable with
zero mean and unit variance and plot the histogram of the samples. How does the his-
togram compare to Figure 1? Compare this result to the histogram with 10,000 samples.

Solution

The two commands:

x = randn(10000,1);
hist(x,50)

generates the 10,000 samples and plots the histogram using 50 bins. The default is 10 bins
if we leave off the second argument to hist. Type help hist and help randn to learn
more about these functions. �
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Figure 4: Histogram of 10,000 samples of Matlab’s randn function.

Sample mean and variance

We can use the samples to generate an approximation of the mean and variance of the
random variable. These are known as the sample mean and sample variance, respectively,
to distinguish the approximation computed from samples from the true mean and variance.
Let the samples of x be denoted xi, i = 1,2, . . . , n in which we have n samples. The sample
mean and variance are given by

m = 1
n

n∑
i=1

xi

s2 = 1
n− 1

n∑
i=1

(xi −m)2

Notice the sample mean is the formula you always use to compute an average of a collection
of numbers. The sample variance sums the squares of the distances of the samples from
the mean, and then divides by n− 1 (rather than n). The division by n− 1 reflects the fact
that we cannot compute a variance or spread when we have only a single sample.

We can extend the sample mean and variance when x is a vector of random variables.

7
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Let xi denote the ith sample of the random x vector. The formulas are

m = 1
n

n∑
i=1

xi

P = 1
n− 1

n∑
i=1

(xi −m)(xi −m)′

Notice in the sample variance, we take the (outer) product of two vectors xx′, which is
an n × n matrix, and not the usual (inner) product x′x, which is a scalar. The Matlab
functions mean and cov compute the sample mean and covariance for samples of a vector-
valued random variable

Example 2: Sample mean and covariance for three different measurement types

Say we measure three constant variables in an experimental system: the temperature, pres-
sure, and concentration of some key component. Say the mean temperature is 20 ◦C, the
mean pressure is 1 bar, and the mean concentration is 2 mol/L. Say we know the measure-
ment error standard deviations are 0.5 ◦C, 0.2 bar, and 0.1 mol/L, respectively. We also
know these measurement errors are independent random variables. Use randn to generate
15 samples of these three measurements and use mean and cov to compute the sample
mean and covariance. How close are the sample mean and covariance to the true mean and
covariance used to generate the samples?

Solution

We generate the samples and compute the sample mean and covariance using

nsam = 15;

Tsam = 20 + 0.5*randn(nsam,1);
Psam = 1 + 0.2*randn(nsam,1);
Csam = 2 + 0.1*randn(nsam,1);

Measmat = [Tsam, Psam, Csam]

smean = mean(Measmat)
sP = cov(Measmat)
plot(Measmat)

which generates the following output

Measmat =

20.15075 0.92840 2.12553
19.37189 1.31131 2.00060
19.40432 1.31351 1.82824
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20.16828 0.76685 1.88849
20.34552 0.91807 1.94029
20.41108 0.89530 2.03677
20.16328 0.96543 1.86885
18.86462 1.00509 1.94699
20.35392 1.03841 2.14621
20.17987 0.96683 1.84220
19.98065 0.64298 1.87331
20.07565 0.94577 2.06438
20.67500 0.93168 2.11631
19.57186 0.94377 2.03733
20.21466 0.98150 1.84896

smean =

19.99542 0.97033 1.97096

sP =

2.3235e-01 -3.8051e-02 1.3868e-02
-3.8051e-02 2.8680e-02 7.6420e-05

1.3868e-02 7.6420e-05 1.2442e-02

Notice the mean is fairly accurate. The true covariance matrix is

P =

(0.5)2 0 0
0 (0.2)2 0
0 0 (0.1)2


The covariance matrix is diagonal because the measurement errors are not correlated with
each other. Notice the sample covariance and the true covariance are fairly different from
each other. The diagonal elements are reasonably close but the off-diagonal elements in
the sample covariance are not very close to zero. It is generally true that sample means
are accurate with a small number of samples, but sample variances require a much larger
number of samples before they are accurate. The data are plotted in Figure 5.

�

2.5 Linear transformation of a random variable

If we multiply a scalar random variable x by a constant a and define that to be a new
random variable y , then we alter both the mean and variance of y compared to x. The
formulas are given as follows

y = ax
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Figure 5: The 15 samples of measurement, pressure, and concentration.

my = amx var(y) = a2var(x)

You should test this result by generating some samples of a uniform or normal distribution
and multiplying by a scalar.

For normal distributions, we know more. If x is normal, then y is also normal, and for
x ∼ N(mx, σ 2

x), then y ∼ N(my , σ 2
y), and my = amx and σ 2

y = a2σ 2
x .

Vector of random variables. The corresponding formulas for vector-valued random vari-
ables are as follows.

y = Ax
my = Amx var(y) = Avar(x)A′ (4)

In particular if x ∼ N(mx,Px) then y ∼ N(my ,Py) in which

my = Amx Py = APxA′

This result provides a handy way to generate normal distributions with desired covariance
P. The function randn provides random variables with unit variance, Px = I. If we generate
samples of y by multiplication by the square root of the matrix P, then we have y =

√
Px,

and the variance for y is given by Equation 4

Py =
√
P I (

√
P)′ = P

The Matlab command for the square root of a matrix is sqrtm.

10
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2.6 Central limit theorem.

Put a statement of the central limit theorem here.

Example 3: Adding ten uniformly distributed random variables.

Consider ten uniformly and independently distributed random variables, x1, x2, . . . , x10.
Consider a new random variable y , which is the sum of the ten x random variables

y = x1 + x2 + · · ·x10

Even though the ten x random variables are uniformly distributed, and their probability
distribution looks nothing like a normal distribution, let’s explore the probability distri-
bution of the resulting y random variable. According to the central limit theorem, it may
appear to be normally distributed.

The x random variables are distributed as

x ∼ U(0,1)

Computing the mean and variance gives

x =
∫ 1

0
xdx = x

2

2

∣∣∣∣∣
1

0

= 1
2

var(x) =
∫ 1

0
(x − x)2dx = 1

3
(x − 1/2)3

∣∣∣∣1

0
= 1

12

If we stack the x variables in a vector

x =


x1

x2
...
x10


we can write the y random variable as the linear transformation of the x’s

y = Ax A =
[
1 1 · · · 1

]
Using the previous results on linear transformations we know that y ’s mean and variance
are given by

y = Ax y = 5

var(y) = Avar(x)A′ var(y) = 5
6
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Figure 6: Histogram of 10,000 samples of uniformly distributed x.

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 9

y

ny

Figure 7: Histogram of 10,000 samples of y =
10∑
i=1

xi.

12



CBE 255 Estimating Parameters from Data 2014

So, if the central limit theorem is in force with only ten random variables in the sum, we
might expect y to be distributed as

y ∼ N(5,5/6)

We use the following Octave code (Matlab code is similar) to generate 10,000 samples
of the 10 uniformly distributed x random variables and add them together to make y .

nsam = 10000;
nsum = 10;
x = rand(nsam, nsum);
y = sum(x,2);
figure(1); hist(x,50)
figure(2); hist(y,50)
mx = mean(x(1,:))
varx = var(x(1,:))
my = mean(y)
vary = var(y)

Executing this code and then examining the means and variances of the first x, x1, and y
gives

mx = 0.48859
varx = 0.12250
my = 4.9949
vary = 0.80278

A histogram of the 10,000 samples of x1 and y are shown in Figures 6 and 7. It is clear that
even ten uniformly distributed x random variables produce nearly a normal distribution
for their sum y .

�

2.7 Confidence intervals for the normal distribution

Assume x is normally distributed with mean m and covariance P. Figure 8 shows 1000
samples for

m =
[

1
2

]
P =

[
2 0.75

0.75 0.5

]
The samples were generated with the following code
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Figure 8: One thousand samples of the random variable x ∼ N(m,P) and 95% probability
contour.

m = [1;2];
n = length(m);
P = [2, 0.75; 0.75, 0.5];
nsam = 1000;

%% generate the samples x is N(m, P)
x = repmat(m, 1, nsam) + sqrtm(P)*randn(n,nsam);

%% compute the 95% confidence interval ellipse
alpha = 0.95;
A = inv(P);
b = chi2inv(alpha, n);
[xe, ye] = ellipse(A, b, 100, m);

%% plot samples and 95% confidence ellipse
plot(x(1,:), x(2,:), ’o’, xe, ye)

The α-level probability ellipse for the normal is given by

(x −m)′P−1(x −m) ≤ χ2(n,α)
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Notice from the code sample that the Matlab function to return the value of χ2(n,α) is1

chi2inv(alpha, n)

For α = 0.95 and n = 2, we have χ2(n,α) = 5.99, and each sample of x has 95% probability
of lying inside this ellipse. We use the function ellipse(A, b, 100, m) to generate the
ellipse corresponding to (x −m)′A(x −m) ≤ b. Notice we can make this plot only when
n = 2. In higher dimensions we report the box containing the ellipse as shown in Figure 3.

Figure 8 shows 1000 samples and we see that the samples indeed generate an elliptical
region. For 1000 samples and α = 0.95, we would expect that 1000(1−0.95) = 50 samples
would lie outside the 95% probability region. In Figure 8, the actual number is 44. You can
compute the number outside the ellipse with the code

e = x - repmat(m, 1, nsam);
sum( diag(e’*inv(P)*e)> chi2inv(alpha, n) )

The first command moves the mean of the samples to zero and the second command
measures how far each sample is from zero. The ones outside the ellipse have values of
e′P−1e greater than χ2(n,α) and the “greater than” test generates 1 for these samples and
0 for the others. The sum command then counts how many lie outside the ellipse.

In parameter estimation problems, the α-level probability ellipse is also known as an
α-level confidence interval. It is customary to report 95% confidence intervals, although
reporting several values of α may be appropriate depending on the application.

3 Least-Squares Estimation

Consider again the problem of fitting a straight line to data

yi =mxi + b

in which yi is the measurement at xi, i = 1, . . . nd and nd is the number of data points.
Using matrix vector notation, we can write the equation for all the data as

y = Aθ

in which the parameters to be estimated are placed in the θ vector

θ =
[
m
b

]
and the y vector and A matrix are given by

y =


y1

y2
...
ynd

 A =


x1 1
x2 1
...

...
xnd 1


1In particular, notice that the order of the arguments (n,α) is reversed.
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We do not expect the best fit line to pass through all the data points, so we modify the
model to account for measurement error2

y = Aθ0 + e (5)

in which θ0 is the (unknown!) true parameter value vector and e is a random variable. We
model the measurement error as a normal distribution with mean 0 and variance σ 2I.

e ∼ N(0, σ 2I) (6)

The best estimate of θ in a least-squares sense is given by

θ̂ = (A′A)−1A′y (7)

a formula that we used in Module 2. However, we also can examine the distribution of pa-
rameter estimates given the observed measurements corrupted by the measurement errors.
Imagine we create replicate datasets by drawing measurement errors e from the distribu-
tion given in Equation 6. For each dataset we apply Equation 7 and produce a parameter
estimate. The distribution of measurement errors creates a distribution of parameter esti-
mates. In fact, for models linear in the parameters, we can show the parameter estimates
also are normally distributed

θ̂ ∼ N(θ0,P)

in which the mean is the true value of the parameters and the covariance is

P = σ 2(A′A)−1

We also can calculate the parameter “confidence intervals.” We merely compute the size of
the ellipse containing a given probability of the multivariate normal. As discussed previ-
ously, that can be shown to be the chi-square probability function (Box and Tiao, 1973, p.
116). Given the number of estimated parameters, np, and the confidence level, α, then

(θ− θ̂)′A′A(θ− θ̂)
σ 2

≤ χ2(np, α) (8)

The χ2 distribution is tabulated in many statistics handbooks Box, Hunter, and Hunter
(1978) and is available in many computing environments3

2Notice the model structure is usually in error also, e.g., the true relationship between y and x may be
nonlinear, variables other than x may be required to predict y , and so on. The procedure outlined here lumps
structural error into e as well, but structural error is not accounted for correctly in this way. If the structure is
in serious doubt, one may pose instead model discrimination tests to choose between competing models with
different structures Stewart, Henson, and Box (1996); Stewart, Shon, and Box (1998).

3The Matlab command is chi2inv(alpha, n).
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4 Basic Model Fitting

Consider a model represented as follows:

y = f(x, θ) (9)

The model provides a prediction for the value of y corresponding to the given input x.
The model output could be a vector of values y = {y1, . . . yNy}, although most often it
is a single variable. Similarly, the model input x = {x1, . . . xNx} might be one or several
variables. The adjustable parameter(s) are contained in the vector θ = {θ1, . . . θNθ}.

Example 4: Antoine Model for Vapor Pressure

One of the simplest models used to correlate vapor pressure data is the Antoine equation:

lnPsat = A+
B

T + C (10)

This model outputs a predicted value for the vapor pressure Psat of a substance for a
given temperature T . A, B and C are parameters in the model, determined by fitting to
experimental vapor pressure data. �

The data used in parameter estimation consists of the results of several experiments,
each providing a set of corresponding, simultaneously-observed values for the “input” and
“output” variables of the model. Each experimental result is termed an “observation” (or
more commonly, a “data point”). Each observation k consists of the values

xk = {xk1 , . . . xkNx}, yk = {yk1 , . . . ykNy}

The distinction between the input and output variables in the model is generally not im-
portant from the standpoint of parameter estimation, since all variable values must be
observed. Note the model form need not match experimental circumstances. The indepen-
dent variables x in the model form need not be variables that are independently adjustable
in the experiment. For instance, in Example 4, one might perhaps set the pressure Psat for
each data point and then measure the corresponding temperature T .

4.1 “Nonlinear Least Squares”

With more data points than unknown parameters, it is not possible for the model to fit each
data point exactly. The question is how to obtain the best compromise so that the model
predictions on the whole are close to the data values. Closeness for any single observation
may be measured by the square of the distance between the model prediction and the
observation. Closeness averaged over the entire data set is often measured by the sum of
the squares of the distances for each individual observation. Minimizing this combined
measure of distance makes the model predictions as close as possible to the data in an
average sense, and methods based on this idea are referred to as “least squares” methods.
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Figure 9: Distances between data points and model-fitted points (ŷ, x̂).

The model will not fit the observed data points (yk, xk), k = 1, . . . , K exactly, so we
consider the corresponding set of points (ŷk, x̂k), k = 1, . . . , K that do fit the model exactly
and are closest to each data point (see Figure 9 ). For each data point, the values ŷ are those
predicted by the model for inputs x̂, and x̂ is determined so as to make (ŷ, x̂) as close as
possible to the data point values (y,x).

The sum-of-squares measure is as follows:

SS =
K∑
k=1

[ Ny∑
i=1

( ŷki −yki
σyi

)2

+
Nx∑
j=1

( x̂kj − xkj
σxj

)2
]

(11)

where ŷk = f(x̂k, θ), k = 1, . . . , K

In the above, the quantities ŷki −yki = εkyi and x̂kj −xkj = εkxj represent the “errors” between
the value fitted to the model and each observation value. The denominator quantities σyi
and σxj are constants selected to scale each type of variable yi or xj . This is done in order
to put the errors are on a comparable basis so it will be meaningful to add them all together
into the sum in (11). Typically these error scaling constants are chosen as estimates of the
accuracy in the experimental measurements of each variable type. For instance, if y were
a pressure and x were a temperature, it would make little sense to add the square of an
pressure error measured in bars to the square of a temperature error in Kelvin. However, if
the accuracy of the pressure measurements is estimated to be ±0.02 bar and the accuracy
of the temperature measurements is estimated to be ±0.5 K, squares of the scaled errors
could be meaningfully added using σy = 0.02 bar and σx = 0.5 K. Note that the values of
the error scales σyi and σxj have units, so that the scaled errors, and SS, are dimensionless.
More can be said about these error scales in the context of statistical methods, but even
when doing basic model fitting with a limited number of data points, the data fitter can and
should provide estimates for them.
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Once the sum-of-squares in (11) is constructed, the least squares parameter estimate
can be computed by solving the following minimization problem:

min
θ,x̂1,...,x̂K

SS(θ, x̂1, . . . , x̂K) (12)

While a simple calculation can find the minimum for the special case where f(x, θ) is a
linear function, models encountered in chemical engineering are often nonlinear. As with
most nonlinear problems, solving (12) then requires an iterative solution and a starting
estimate for the unknown variables. (12) is a particular kind of minimization problem
where the objective function to be minimized is a sum of squares, and Matlab has a
specific function lsqnonlin that can be applied to solve problems of this form. lsqnonlin

performs a minimization of the general form “ min
X1,...,XM

Ntot∑
`=1

[
F`(X)

]2 ”. It obtains values of

the vector of errors F(X) (not squared) by calling a function supplied by the user. It may
be applied to (12) by constructing the vector F to contain one element for each error term
in the sum (11), and by taking X = {θ, x̂1, . . . , x̂K}.

When the minimum in (12) is found, the resulting value SSmin offers some indication
of the average error between the fitted model predictions and the data values. There are
K ·(Ny+Nx) error terms in the sum (11), while there are Nθ+K ·Nx adjustable variables in
(12), leaving the net number of error degrees of freedom in SS equal toK·Ny−Nθ . Therefore

an average scaled error can be computed as
√

SSmin
K·Ny−Nθ . It is usually not possible to ascribe

this residual error in a specific way to either uncertainties in the data or inaccuracy of the
model form itself, as both reasons may contribute. However, the mean error value does
indicate how well the model and data agree, and suggests the level of accuracy that might
be expected when the fitted model is put to use.

Example 5: Fitting the Antoine Model

Fit the Antoine model in Example 4 to the following set of values reported4for the vapor
pressure of acetone.

T (◦C) Psat (mmHg)
-59.4 1
-40.5 5
-31.1 10
-20.8 20

-9.4 40
-2.0 60
7.7 100

22.7 200
39.5 400
56.5 760

4See (Perry, Green, and Maloney, 1997, Table 2-8, p.2-61)
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Figure 10: Antoine model fitted to the acetone vapor pressure data of Example 5.

Assume the reported temperature values have accuracies of ±0.1◦C and that the pressure
values have accuracies of ±2%. Plot the fitted model along with the data points. What is
the average scaled error between the model predictions and the data? Interpret this value
as an accuracy of the model predictions expressed in terms of (a) predicted temperature
for a given pressure, and (b) predicted pressure for a given temperature.

Solution

Matlab code is contained in script fitacetone together with the functions nlls and
Antoine. When using lsqnonlin (which is called by nlls), you need to provide a suf-
ficiently good initial guess for the parameters, which you provide when calling nlls. Once
an acceptable fit is obtained with an acceptably close initial guess, it sometimes helps to
run the numerical minimization again using the result of the previous calculation as the
new initial guess. In this case the resulting fit is quite good (Figure 10). The fact that the
average scaled error of the fit is less than unity suggests that the values being fitted were
smoothed before being listed in the table in the handbook.

�
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5 Parameter Estimation with Differential Equation Models

Now we turn to the single most important parameter estimation problem in chemical reac-
tor modeling: determining reaction-rate constants given dynamic concentration measure-
ments. To get started, we consider a simple reactor model consisting of a single differential
equation with a single experimentally measured quantity

dx
dt
= f(x;θ) (13)

x(0) = g(x0;θ) (14)

y = h(x) (15)

in which x is the single material balance of interest, θ are the unknown model parameters,
x0 is the initial condition, and y is the experimentally measurable quantity. For simplicity
let us assume here that x itself is measured, in which case h(x) = x. As we see in several of
the examples, it may be necessary to include some of the initial conditions also as unknown
parameters. Often t is time, but in steady-state tubular PFRs, reactor volume or length can
take the place of time without changing the structure of the parameter-estimation problem.

As before, we define a least-squares objective to measure our fit to the data

Φ(θ) =
∑
i
(x̃i − xi)2 (16)

in which x̃i is the experimental measurement at time ti, and xi is the solution to the model
at time ti, xi = x(ti;θ). Note xi is the only part of the objective function that depends on
the model parameters. Again, we minimize this objective function to obtain our parameter
estimates

min
θ
Φ(θ) (17)

subject to Equations 13–15.
The major change is that the model constraint consists of nonlinear differential equa-

tions rather than linear or nonlinear algebraic equations as in the previous sections. The
differential equations make it much more expensive to evaluate the constraints while solv-
ing the optimization problem.

Parameter estimation algorithm:

À Guess initial parameter values.

Á Using an appropriate ODE solver, solve the model given the current parameter values.
Compute xi.

Â Evaluate Φ using Equation 16.

Ã Update parameter values to minimize Φ. This step and the next are usually controlled
by an optimization package.

21



CBE 255 Estimating Parameters from Data 2014

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

Figure 11: Measurements of species concentrations in Reactions 18 versus time.

Ä Check convergence criteria. If not converged, go to Á.

Å On convergence, set θ̂ to current parameter values. Calculate approximate confidence
intervals.

Example 6: Estimating two rate constants in reaction A→ B→ C

Consider the irreversible series reactions

A
k1-→ B

k2-→ C (18)

We wish to estimate the two rate constants k1 and k2 from the measurements shown in
Figure 11. We would also like to know how much confidence to place in these estimated
parameters.

Solution

We use the function parest.m to estimate parameters in differential equation models. Type
at the command line help parest to get an idea of the many options available. For this
problem we require only the following simple options.
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Figure 12: Fit of model to measurements using estimated parameters.
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%% ABC.m
%% Estimate parameters for the A->B->C model
%% jbr, 11/2008

% make sure ensure sundials/cvode is in the path
startup_STB

k1 = 2; k2 = 1;
ca0 = 1; cb0 = 0; cc0 = 0;
thetaac = [k1; k2];
tfinal = 6; nplot = 100;

model.odefcn = @massbal_ode;
model.tplot = linspace(0, tfinal, nplot)’;
model.param = thetaac;
model.ic = [ca0; cb0; cc0];

objective.estflag = [1, 2];
objective.paric = [0.5; 3];
objective.parlb = [1e-4; 1e-4;];
objective.parub = [10; 10];

measure.states = [1,2,3];
%% load measurements from a file
table = load (’ABC_data.dat’);
measure.time = table(:,1);
measure.data = table(:,2:end);

%% estimate the parameters
estimates = parest(model, measure, objective);

disp(’Estimated Parameters and Bounding Box’)
[estimates.parest estimates.bbox]

%%plot the model fit to the noisy measurements
figure(1)
plot(model.tplot, estimates.x, measure.time, measure.data, ’o’);

We also require the function massbal ode to define the right-hand side of the differen-
tial equations

24



CBE 255 Estimating Parameters from Data 2014

function xdot = massbal_ode(x, t, theta)
ca = x(1);
cb = x(2);
cc = x(3);
k1 = theta(1);
k2 = theta(2);
r1 = k1*ca;
r2 = k2*cb;
xdot = [-r1; r1-r2; r2];

end

Running the ABC.m file produces the following parameter estimates and confidence inter-
vals.

θ̂ =
[

2.03
0.989

]
±
[

0.229
0.0823

]
θ0 =

[
2
1

]
The estimates are close to the true values θ0 used to generate the data. The confidence
intervals are reasonably tight given the three species measurements with the noise level
indicated in Figure 11. The fit of the model using the estimated parameters is shown in
Figure 12.

�

6 Exercises

Exercise 1: Estimating rate constants in series reactions with different measurements

Consider again Example 6. Download the program parest.m from the class website and
do the following parameter estimation problems.

(a) Consider measurements of all three species to be available and reproduce the esti-
mates and approximate confidence intervals given in the Example 6.

(b) Next consider measurements of only species B and C to be available. Estimate the
two rate constants using only these measurements. What happens to the confidence
intervals? Do you have sufficient information to estimate both rate constants with B
and C measurements?

(c) Next consider measurement of only species B to be available and estimate both rate
constants using this measurement. What happens to the confidence intervals? Do
you have sufficient information to estimate both rate constants with only the B mea-
surement?
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Figure 13: Measurements of species concentrations versus time for parallel reactions.

(d) Next consider the measurement of only species A to be available and estimate both
rate constants using this measurement. What happens to the confidence intervals?
Do you have sufficient information to estimate both rate constants with only the A
measurement?

(e) Finally consider the measurement of only species A to be available, but estimate only
the first rate constant. Assume the second rate constant is known to be k2 = 1. What
happens to the confidence intervals? Do you have sufficient information to estimate
only the first rate constant with only the A measurement?

Exercise 2: Estimating rate constants in parallel reactions with different measurements

Consider the parallel reaction scheme

A
k1-→ B A

k2-→ C (19)

and the measurements shown in Figure 13. The reactor is initially filled with only reactant
A.

(a) Fit both rate constants using all three species measurements: (A,B,C). Comment on the
model fit and the uncertainty in the parameters. Are these measurements adequate
to estimate the two rate constants.
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(b) Repeat for all combinations of two species measurements; (A,B), (A,C), and (B,C). Are
two measurements sufficient for estimating the two rate constants?

(c) Repeat for all single species measurements; (A), (B), and (C). Is one measurement
sufficient for estimating the two rate constants?

Exercise 3: Linear transformation of a normal is normal (Rawlings and Ekerdt, 2012,
Exercise 9.14)

Let x be a normally distributed random variable with mean mx and covariance Px

x ∼ N(mx,Px)

Let a new random variable z be defined as a linear (affine) transformation of x

z = Ax + b

in which A is a constant matrix and b is a constant vector. Then one can show that z is
also normally distributed with mean mz and covariance Pz given by

z ∼ N(mz,Pz) mz = Amx + b Pz = APxA′ (20)

(a) Generate 1000 samples of x for

x ∼ N(mx,Px) mx =
[

0
0

]
Px =

[
4 2
2 4

]

Plot the 95% probability contour (ellipse) for the random variable x and plot the 1000
samples on the same plot. How many of your samples are inside the ellipse?

(b) Transform your 1000 samples of x using

z = Ax + b A =
[

1 1
1 −2

]
b =

[
−10
12

]

What is the mean and covariance for z according to Equation 20. Plot the 95% probabil-
ity contour (ellipse) for the random variable z and plot the 1000 transformed samples
on the same plot. How many of your z samples are inside the ellipse?

(c) Repeat for
A =

[
1 1

]
b =

[
−10

]
Since z is a scalar for this case, make a histogram plot of the z samples.

(d) Consider again the linear model and least-squares estimate

y = Aθ0 + e θ̂ = (A′A)−1A′y
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in which
e ∼ N(0, σ 2I)

Use the above result on linear transformation of normals to show that the parameter
estimates are distributed as given in Section 3

θ̂ ∼ N(θ0,P) P = σ 2(A′A)−1

Exercise 4: Estimating rate constant and activation energy from rate constant measure-
ments at different temperatures

Assume a reaction rate has been measured at several different temperatures in the range
300 K ≤ T ≤ 500 K. Model the rate (rate constant) as

k = k0 exp(−E/T) (21)

in which k0 (min−1) is the pre-exponential factor and E (K) is the activation energy scaled
by the gas constant. To make the estimation problem linear, transform the data by taking
the logarithm of Equation 21

lnk = lnk0 − E/T

(a) Estimate the parameters lnk0 and E using least squares given the following single
experiment consisting of nine rate constant measurements at the following tempera-
tures

T k
300 0.01658
325 0.06151
350 0.09822
375 0.2751
400 0.9982
425 2.113
450 4.401
475 4.505
500 13.42

What are the least squares estimates of lnk0 and E for this experiment?

(b) Plot the data and least squares fit on two plots: one plot of k versus T and a separate
plot of lnk versus 1/T . How well does Equation 21 represent these data?

(c) Next we wish to analyze the following 50 replicate experiments in which each ex-
periment consists of nine measurements of k at different T . The first four of these
experiments are shown here
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T1 k1 T2 k2 T3 k3 T4 k4
303 0.01145 302 0.0175 302 0.01208 301 0.00955
323 0.0483 321 0.04742 326 0.06483 329 0.05799
351 0.167 345 0.1456 354 0.2289 354 0.1729
376 0.3197 379 0.5643 375 0.436 376 0.2612
402 1.221 396 0.9718 401 0.877 404 0.8787
429 1.278 425 2.166 427 2.152 422 1.052
453 3.844 447 2.853 452 2.354 448 3.882
479 4.519 476 5.098 477 4.685 475 5.931
501 13.8 504 12.05 496 8.29 496 6.235

Download these data from the file

kt lotsmeas.dat

Calculate a least squares estimates for each experiment. Plot the 50 estimates using
the estimate of lnk0 as the abscissa and the estimate of E as the ordinate.

(d) Next combine all 50 experiments into one dataset of k, T values and estimate lnk0

and E using all 450 measurements. What are the values of the estimates?

(e) Plot all 450 measurement and the least squares fit on two plots: one plot of k versus
T and a separate plot of lnk versus 1/T . How well does Equation 21 represent all of
the measurements.

Exercise 5: Fitting heat capacity data

The following data are available for the heat capacity of ethanol in the ideal gas state:

T(K) Cp (kJ/kmol·K)
250 61.0
300 69.5
350 69.9
400 85.8
450 90.4
500 91.9
550 100.0
600 108.5
650 118.1
700 123.2

(a) Heat capacities are often fitted to simple polynomial models. Fit the above data to
the model

Cp = A+ BT + CT 2 +DT 3 + ET 4
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Plot the fitted equation over the temperature range from 250—700 K, and in the same
plot also show the data points. Estimate the accuracy of predictions made with the
fitted model.

(b) In Perry’s Handbook5, ideal gas heat capacities are given by equations having the
following form:

Cp = C1 + C2

[
C3/T

sinh (C3/T)

]2

+ C4

[
C5/T

cosh (C5/T)

]2

Fit this model to the above data. Plot the fitted model along with the polynomial
fit and the original data over the range from 250—700 K. Estimate the accuracy of
predictions made with the fitted model.

(c) From molecular physics it is known that gas heat capacities plateau at a minimum
value at lower temperatures, rise over an intermediate temperature range, and plateau
again at a maximum value at high temperatures. Plot the predictions of the two fitted
models obtained above over the range from 100—1500 K. Comment on the suitability
of the functional forms assumed for each.

(d) From the molecular structure of ethanol we can determine the lower and upper plateau
values for the ideal gas heat capacity Cp to be 4R and 25R respectively. Propose a
nonlinear model form with a function shape that varies between these two plateaus.
Fit your model to the above data and plot the fitted model and the original data over
the temperature range from 100—1500 K. Estimate the accuracy of predictions made
with your model.

(e) Why fit a model, why not just use the data you have and interpolate? Prepare an
interpolant for the above data using the Matlab function polyfit with n = K − 1.
Then use function polyval to make a plot of the interpolation over the range from
250—700 K, marking the original data points in the plot.

Exercise 6: Does B catalyze the second reaction?

We have collected the laboratory data shown in Figure 14 and are considering the following
two proposed kinetic mechanisms to explain these data

A+ B
k1-→ C C+ B

k2-→ D+ B (22)

A+ B
k1-→ C C

k2-→ D (23)

5See (Perry et al., 1997, Table 2-198)
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Figure 14: Measurements of species concentrations versus time for Exercise 6.

We have measurements of species A, C, and D, but not species B. Although we cannot
measure species B, we do know that we charged the reactor with

cA(0) = 1 mol/L cB(0) = 10 mol/L cC(0) = 0 mol/L cD(0) = 0 mol/L

We wish to find out whether or not species B catalyzes the second reaction.

(a) Estimate the kinetic parameters for Reactions 22 and show the best parameter esti-
mates and their confidence intervals. Be sure to report the units of the rate constants.
Plot the fit to the experimental data using the estimated parameters.

(b) Repeat for Reactions 23.

(c) Which mechanism better explains the data? Explain your answer.

Exercise 7: Can you hear me now?

Consider again the two kinetic mechanisms of Exercise 6.

(a) Repeat Exercise 6, but with the experimental data shown in Figure 15 that were col-
lected after charging the reactor with

cA(0) = 4 mol/L cB(0) = 3 mol/L cC(0) = 1 mol/L cD(0) = 0 mol/L
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Figure 15: Measurements of species concentrations versus time for Exercise 7.

(b) Make a plot of the residuals of the model fits for the catalyzed and uncatalyzed mech-
anisms. Use help parest to see how the residuals are returned by parest so you
can plot them.

What do you conclude from these residual plots? Does your conclusion change about
which mechanism better explains these data?

(c) Explain any differences in your conclusions from the two different data sets. Although
we are measuring the same species in both experiments, do the two experiments
contain different information? Explain why or why not.

Exercise 8: Finding rate constant and order

We want to estimate the rate constant k and order n for a rate expression by fitting it to
some rate versus concentration data for the reaction

A -→ B r = kcnA (24)

We have measurements of r for different cA given in Figure 16. We assume the values of
cA are known exactly and all of the experimental measurement error is in r .

(a) Consider a log transformation of the rate expression ln(r) = ln(k) + n ln(cA) with
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Figure 16: Rate versus concentration of A.

model parameters

θ =
[

ln(k)
n

]
Develop a model that is linear in the parameters y = Aθ. What are y and A for this
problem?

(b) What are the least squares estimates of ln(k) and n? Plot the data and your model fit
for r versus cA. Plot the data and and your model fit for ln(r) versus ln(cA). Comment
on the quality of the fit of the model to the data.

(c) Notice in this problem we are not told the value of the measurement error variance
σ 2. Look at your model fit to the ln(r) versus ln(cA) data. How might you estimate
the variance of the measurement error in ln(r) from the residuals of the model fit?
What is a reasonable value of σ 2 for your measurement error based on the residuals?

(d) Given this value of σ 2, plot the 95% confidence ellipse for the least squares estimates
of ln(k) and n. Your least squares estimates given above should be the center of the
95% confidence ellipse. Are the parameters ln(k) and n strongly correlated in this
model? Explain why or why not based on your plot.
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Exercise 9: Choose the best reaction model

We are considering two different kinetic models to represent some experimental pilot plant
reactor data.

Model 1

A -→ 2B r1 = k1cA
2B -→ D r2 = k2c2

B

B + C -→ E r3 = k3cBcC

Notice that the kinetic events in this model are elementary reactions and the rate
expressions are consistent with the reaction stoichiometry. We call such a model a
reaction mechanism.

Model 2

A -→ D r1 =
k̃1cA

1+ k̃2cC

A + 2C -→ 2E r2 =
k̃1cA

1+ 1/(k̃2cC)

Notice that the kinetic events in this model are not elementary reactions. The rate
expressions are not given by molecular collision arguments. But we can still estimate
the model parameters from experimental data.

The data from a well-stirred batch reactor are shown in Figure 17. No B is initially charged
to the reactor.

(a) Fit parameters k1, k2, k3 for Model 1 to the data. What are the best parameters and
the 95% confidence intervals for this model. Plot the model fit and the residuals for
Model 1.

(b) Fit parameters k̃1, k̃2 for Model 2 to the data. What are the best parameters and the
95% confidence intervals for this model? Plot the model fit and the residuals for Model
2.

(c) Which model would you recommend for this system? Justify your choice.

Exercise 10: Noise in the Antoine model measurements

The data in Example 5 were seen to fit the Antoine model very well. These values may have
been smoothed prior to being reported.
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Figure 17: Concentrations of species A, C, D, and E versus time.

(a) Add simulated experimental errors to the measurements: Look up the Matlab func-
tion rand and generate a vector of the same length as your vector of vapor pressure
observations containing random numbers distributed uniformly on the interval [0,1]
. Convert these to a distribution on the interval [−1,1] by multiplying each by 2 and
subtracting 1. Then add simulated errors of ≈ ±15% to the vector of vapor pressure
values by adding 0.15 times the [−1,1] random numbers to the natural log of the
reported values.

(b) Repeat Example 5 to fit the model to the more-noisy data. Plot the model predictions
along with the noisy data.

Exercise 11: Estimating kinetic parameters for reversible series reactions

The following reactions take place in a well-mixed batch reactor. The kinetics are described
by the system of ODEs shown.

2A
k1-⇀↽-
k−1

B
k2-→ C
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dcA
dt

= −2k1c2
A + 2k−1cB

cB
dt
= k1c2

A − k−1cB − k2cB

dcC
dt

= k2cB

k1 = 6× 10−3, k−1 = 1× 10−2, k2 = 5× 10−2

(a) First, manufacture some simulated experimental data:

(a) Using the parameter values shown, run ode15s to obtain model predictions for
the three state variables cA, cB , cC at 15 time values evenly spaced from t = 0 to
t = 100. Use initial values cA0 = 10, cB0 = 0, cC0 = 0.

(b) Using the procedure described in Exercise 10, add simulated errors of ≈ ±15%
to the values of y = {cA, cB , cC} and errors of ≈ ±1 time unit to the values of t.

(b) Use the nonlinear least-squares estimation procedure of Section 4 to estimate values
of the parameters θ = {k1, k−1, k2 } from the simulated data. Use the nlls function.
(You may or may not wish to make modifications to it, depending on your approach.)

You will need to construct a function f(xhat,theta) to pass to nlls. f will call
ode15s to calculate the model predictions ŷ for cA, cB , cC , given arguments x̂ (= t)
and θ.

(Note this calculation may take a few minutes, since it involves many repeated ODE
integrations.)

(c) Plot a curve of the predictions of the model using these estimated parameters over
the range 0 ≤ t ≤ 100 along with the simulated data points. Also plot the curve given
by the original model parameters.
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