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1 Material Balance for the well-mixed, batch reactor

The batch reactor is assumed to be well stirred, so there are no concentration gradients any-
where in the reactor volume. In this case it is natural to consider the entire reactor contents
to be the reactor volume element as in Figure 1, and V = VR.

Rj

Figure 1: Batch reactor
volume element.

The statement of conservation of moles for component j
is

d
(
cjVR

)
dt

= RjVR (1)

Equation 1 applies whether the reactor volume is constant
or changes during the course of the reaction. If the reactor
volume is constant, which is sometimes a good approxima-
tion for liquid-phase reactions, VR can be divided out of both
sides of Equation 1 to give

dcj
dt
= Rj (2)

Be sure to use Equation 1 rather than Equation 2 if the re-
actor volume changes significantly during the course of the
reaction.
∗Parts of these notes are taken from Rawlings and Ekerdt (2012)
†rawlings@engr.wisc.edu
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1.1 Analytical Solutions for Simple Rate Laws

In complex and realistic situations, the material balance for the batch reactor must be
solved numerically. However, if the reactor is isothermal, and the rate laws are assumed
to be quite simple, then analytical solutions of the material balance are possible. Analyt-
ical solutions are valuable for at least two reasons. First, due to the closed form of the
solution, analytical solutions provide insight that is difficult to achieve with numerical so-
lutions. The effect of parameter values on the solution is usually more transparent, and the
careful study of analytical solutions can often provide insight that is hard to extract from
numerical computations. Secondly, even if one must compute a numerical solution for a
problem of interest, the solution procedure should be checked for errors by comparison to
known solutions. Comparing a numerical solution procedure to an analytical solution for
a simplified problem provides some assurance that the numerical procedure has been con-
structed correctly. Then the verified numerical procedure can be used with more assurance
on the full problem for which no other solution is available.

The next several sections derive analytical solutions for some simple rate laws. Of
course, the batch reactor is assumed to be operating at constant temperature in this dis-
cussion.

First-order, irreversible. Consider the first-order, irreversible reaction

A
k
-→ B (3)

in which the reaction rate is given by r = kcA. The units of the first-order rate constant
are (time)−1. Application of the material balance for a constant-volume reactor gives the
following differential equation

dcA
dt

= −kcA (4)

in which the negative sign arises because the production rate of A is RA = −r due to the
stoichiometry of the reaction. Equation 4 requires an initial condition to have a unique
solution. We denote the initial concentration of A in the reactor as cA0,

cA(t) = cA0, t = 0

The solution to the differential equation with this boundary condition is

cA = cA0e−kt (5)

which is plotted in Figure 2 for several values of the rate constant k. Because the reaction
is irreversible, the A concentration decreases exponentially from its initial value to zero
with increasing time. The rate constant determines the shape of this exponential decrease.
Rearranging Equation 5 and taking logarithms gives

ln(cA/cA0) = −kt
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Figure 2: First-order, irreversible kinetics in a batch reactor.
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Figure 3: First-order, irreversible kinetics in a batch reactor, log scale.
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which is plotted by using a log scale in Figure 3. Notice one can get an approximate value of
the rate constant by calculating the slope of the straight line given by ln(cA/cA0) versus t.
This procedure is sometimes recommended as a way to determine rate constants for first-
order reactions by plotting experimental concentration data and determining this slope.
As will be discussed later this procedure is a poor way to determine a rate constant and
should be viewed only as a rough approximation.

The B concentration is easily determined from the A concentration. One could write
down the material balance for component B,

dcB
dt

= RB = kcA (6)

and solve this differential equation with the initial condition for B, cB(0) = cB0, after sub-
stituting the known solution for cA(t). It is simpler to note, however, that the sum of
concentrations A and B is a constant. Adding Equations 4 and 6 gives

d(cA + cB)
dt

= RA + RB = 0

Therefore, cA + cB is a constant and independent of time. The value of this constant is
known at t = 0,

cA + cB = cA0 + cB0

which can be rearranged for the B concentration,

cB = cA0 + cB0 − cA (7)

First-order, reversible. Consider now the same first-order reaction, but assume it is re-
versible

A
k1-⇀↽-
k−1

B (8)

and the reaction rate is r = k1cA − k−1cB . The material balances for A and B are now

dcA
dt

= −r = −k1cA + k−1cB

dcB
dt

= r = k1cA − k−1cB

with the same initial condition cA(0) = cA0, cB(0) = cB0. Notice that cA + cB remains
constant, so cB can be computed from Equation 7. Substituting Equation 7 into the material
balance for A gives

dcA
dt

= −k1cA + k−1(cA0 + cB0 − cA)

which can be rearranged into

dcA
dt

+ (k1 + k−1)cA = k−1(cA0 + cB0) (9)
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Equation 9 is a nonhomogeneous, linear differential equation. The solution can be written
as the sum of what is called the particular solution and the solution to the homogeneous
equation Boyce and DiPrima (1997). One particular solution to the equation is the constant
solution

cAp =
k−1

k1 + k−1
(cA0 + cB0)

You should substitute this back into Equation 9 to check that it is indeed a solution. The
homogeneous equation refers to the differential equation with a zero forcing term on the
right-hand side,

dcAh
dt

+ (k1 + k−1)cAh = 0

The solution to this equation already has appeared in the previous section, cAh = a exp(−(k1+k−1)t),
in which a is an arbitrary constant to be determined from the initial condition. The full
solution to Equation 9 is then cA = cAh + cAp,

cA = ae−(k1+k−1)t + k−1

k1 + k−1
(cA0 + cB0) (10)

The constant a is now determined from the initial condition. Writing Equation 10 for t = 0
gives

cA0 = a+
k−1

k1 + k−1
(cA0 + cB0)

Solving this equation for a yields

a = cA0 −
k−1

k1 + k−1
(cA0 + cB0)

Substituting in this value of a into Equation 10 and rearranging terms gives the final solu-
tion

cA = cA0e−(k1+k−1)t + k−1

k1 + k−1
(cA0 + cB0)

[
1− e−(k1+k−1)t

]
(11)

The B concentration can be determined by substituting Equation 7 into 11 and rearranging,
or more simply, by switching the roles of A and B and k1 and k−1 in Reaction 8, yielding

cB = cB0e−(k1+k−1)t + k1

k1 + k−1
(cA0 + cB0)

[
1− e−(k1+k−1)t

]
(12)

Equations 11 and 12 are plotted in Figure 4. Notice that with the reversible reaction, the
concentration of A does not go to zero as in the irreversible case, but goes to a nonzero
steady-state value. We next calculate the values of the steady-state concentrations. Taking
the limit t -→ ∞ in Equation 11 gives

cAs =
k−1

k1 + k−1
(cA0 + cB0)
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Figure 4: First-order, reversible kinetics in a batch reactor, k1 = 1, k−1 = 0.5, cA0 = 1,
cB0 = 0.

in which cAs is the steady-state concentration of A. Defining K1 = k1/k−1 allows us to
rewrite this as

cAs =
1

1+K1
(cA0 + cB0)

Performing the same calculation for cB gives

cBs =
K1

1+K1
(cA0 + cB0)

These results are shown in Figure 4 for K1 = 1/0.5 = 2 and cA0 = 1, cB0 = 0. Notice that
because K1 is larger than 1, the forward reaction is favored and the steady state favors
the product B, cBs = 2/3, cAs = 1/3. For small K1 values, the steady state would favor the
reactant A.

Example 1: Radioactive Decay1

Radium was used in the formation of phosphorescent watch faces. The radium decays
according to the scheme (half lives are shown):

88Ra226(1620years) -→ 86Rn222(3.83days)+ 2He4 (13)

1Example suggested by T.F. Kuech
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Figure 5: Concentrations of species in Reactions 13–14 versus time.

The alpha particle, 2He4, which is a doubly ionized He atom, hits a phosphor which then
emits light. The radon, 86Rn222, has a half life of only 3.83 days. It will also decay through
the reaction:

86Rn222(3.83days) -→ 84Po218(3.05min)+ 2He4 (14)

Note that Po218 further decays to radioactive isotopes of Pb, Bi and other isotopes of Po
before finally decaying to stable Pb. We will ignore these further steps in this example.

Assuming no Po and Rn were present in the initial 2 milligram sample of Ra, what is the
mass of 84Po218 and 86Rn222 present as a function of time? Plot the mass of 84Po218 and

86Rn222 as a function of time.

Solution

First we convert the 1/2 lives of the two reactants to first-order rate constants with consis-
tent time units using the formula k = ln 2/t1/2, which gives

k1 =
ln 2

1620 yr
= 4.28× 10−4 yr−1

k2 =
ln 2

3.83 day
365 day

1 yr
= 66.1 yr−1
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Figure 6: Concentrations (log scale) versus time

We can summarize the two reactions as

A
k1-→ B+D

B
k2-→ C+D

Notice the two rate constants have quite different magnitudes. If we assume the reactions
take place in a well-mixed environment and neglect transport of the species away from the
sources, the mass balances for all species are

dcA
dt

= −r1 = −k1cA

dcB
dt

= r1 − r2 = k1cA − k2cB

dcC
dt

= r2 = k2cB

dcD
dt

= r1 + r2 = k1cA + k2cB

Since the problem asks for the mass of each component in the sample, we multiply the
solution in molar concentration by the molecular weights of each species.
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Figure 7: Depiction of the explicit Euler method for solving ordinary differential equation
dx/dt = f(x) with initial condition x(0) = x0.

You can solve this problem analytically because the differential equations are linear.
But we compute a numerical solution so the solution method still applies when we change
the reactions to something besides linear, first-order reactions.

The results are shown in Figures 5–6. Notice Figure 6 uses a log-scale on the y-axis to
show the low mass concentration of Rn. Exercise 5 asks you to think about why the Rn
concentration is so low in this set of two reactions.

�

2 Numerical Solution for Complex Rate Laws

2.1 Explicit Euler Method

We first construct our own simple ODE solver so that you have a basic understanding
of what modern numerical ODE solvers are doing. Say we wish to solve the following
differential equation numerically.

dx
dt
= f(x)

x(0) = x0

The simplest scheme for solving this equation is the Euler method. In the Euler method
we partition the time axis into small increments of size h, known as the stepsize. We
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then make a very simple approximation. We assume that over a small enough stepsize,
the function f(x) does not change significantly. We approximate it with the value at the
beginning of the time interval. Then we project across the time interval using the constant
slope approximation for dx/dt. This idea is illustrated in Figure 7. To start the procedure,
we know the value of x at time t = 0, x(0) = x0. So our approximate solution x̃ at time
t = h is given by

x̃(h) = x0 + hf(x0)

Now we have the approximate solution at time t = h, and we repeat the procedure to obtain

x̃(2h) = x̃(h)+ hf(x̃(h))

We continue in this fashion until we have marched the solution across the entire time
interval of interest. We summarize the procedure as follows

x̃(0) = x0

x̃(h) = x0 + hf(x0)
x̃(2h) = x̃(h) + hf(x̃(h))
x̃(3h) = x̃(2h) + hf(x̃(2h))
· · · · · · · · ·

x̃((n+ 1)h) = x̃(nh) + hf(x̃(nh)) (15)

Notice that this approximate numerical solution is recursive in that each x̃((n + 1)h) de-
pends only on x̃(nh). That means we can write an efficient loop for implementing this
scheme. The following code performs this loop for nsteps.

tout = (0:nsteps)’*h;
x = zeros(nsteps+1, numel(x0));
%force x0 to be a row vector
x(1,:) = x0(:)’;
for i = 1: nsteps

t = i*h;
fval = f(t, x(i,:));

%force evaluated function to be a row vector
frow = fval(:)’;
x(i+1,:) = x(i,:) + frow*h;

end

The command plot(tout, x) should give a plot of the resulting approximate numerical
solution using Euler’s method.

2.2 Matlab’s ODE Solvers

Although useful for illustration, the Euler method is unable to cope with many of the issues
that arise in solving complex, large-dimensional ODEs. Languages such as Matlab and
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Octave have much better built-in ODE solvers available. We recommend ode15s as a general
purpose ODE solver. Try help ode15s for more information about Matlab’s ODE solvers.

Exercise 2 provides an introduction into using ode15s for solving ODEs. If you click
on the figure caption of Figure 5, your browser should open a window with the code that
produced this figure. This code and Exercise 2 should lead you through how to use ode15s
to solve a set of nonlinear differential equations.

Solving ODEs remains an active research area in scientific computing although the cur-
rent methods are highly developed. The interested reader may wish to consult Brenan,
Campbell, and Petzold (1989) for more information on these methods.

Notation

A heat transfer area

cj concentration of species j
cjf feed concentration of species j
cjs steady-state concentration of species j
cj0 initial concentration of species j
ĈP constant-pressure heat capacity per mass

E activation energy (divided by the gas constant)

ki reaction rate constant for reaction i
km reaction rate constant evaluated at mean temperature Tm
Ki equilibrium constant for reaction i
Mj molecular weight of species j
n reaction order

nj moles of species j, VRcj
nr number of reactions in the reaction network

ns number of species in the reaction network

P pressure

Q volumetric flowrate

Qf feed volumetric flowrate

Q volumetric flowrate

Qf feed volumetric flowrate

Q̇ heat transfer rate to reactor, usually modeled as Q̇ = UoA(Ta − T)
ri reaction rate for ith reaction

rtot total reaction rate,
∑
i ri

R gas constant

Rj production rate for jth species

t time

T temperature

Ta temperature of heat transfer medium

Tm mean temperature at which k is evaluated

11
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Uo overall heat transfer coefficient

V reactor volume variable

VR reactor volume

xj molar conversion of species j
εi extent of reaction i
νij stoichiometric coefficient for species j in reaction i
ρ mass density

τ reactor residence time, VR/Qf

3 Exercises

Exercise 1: Passing arguments to a function with the global statement

Often we use functions with input arguments, but we require other parameters to evaluate
the function. These parameters do not appear in the input argument list. For example in
solving ODEs

dx
dt
= f(x)

If we call the right-hand side function f, the call to the ODE solver looks like
[tout, x] = ode15s (@f, time, x0)

Now the function f has been assumed to have input arguments corresponding to x and t,
so f’s first line will look like

function dcadt = f(t, x)
But assume this problem is a first-order irreversible reaction so x = cA and the differential
equation of interest is

dcA
dt

= −kcA

Obviously the right-hand side function requires cA, which is passed in as the variable x,
but it also requires the rate constant k, which is not passed to the function. In this case
we use a global statement. In the script that calls the ODE solver, we declare k to be global
and assign it a value. Then in the function f, we also declare k to be global. Then we have
access to it inside the function. The first two lines of the function then look like

function dcadt = f(t, x)
global k

To make sure you understand the idea, write a function firstorder that takes the con-
centration cA and time t as the two arguments and returns dcA/dt for the first-order ir-
reversible reaction. Call this function from a script called call firstorder.m for the
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following values of cA and k

cA = 1 k = 1

cA = 0 k = 1

cA = 1 k = 0

cA = 2 k = 3

Check that the function firstorder returns the correct values for dcA/dt.

Exercise 2: Solving ordinary differential equations (ODEs) in Matlab

Look at the code for Figure 5 as a guide to solving differential equations with Matlab. The
call to the ODE solver ode15s is the following line:

[tout, x] = ode15s (@rates, time, x0);
in which ode15s is the name of the ODE solver, rates is the name of a user-supplied
function, time is the vector of times at which output is requested and x0 is the vector
of initial conditions. The @ prepended to the function name rates in the call to ode15s
signifies that rates is a user-supplied function. The return arguments are tout, the vector
of times at which the solution was computed2, and x, the vector of states at the times tout.
The output is arranged conveniently for plotting the states versus time by the command

plot(tout, x)

(a) Write an external function defining the right-hand side of the ODEs for the first-order
irreversible reaction and plot the numerical solution determined by ode15s. Use pa-
rameter values

k = 1 s−1 cA0 = 1 mol/L

(b) Also plot the analytical solution given in Equation 5. How well do the numerical and
analytical solutions compare?

Exercise 3: Second-order, irreversible reaction

Consider the irreversible reaction

A
k
-→ B

in which the rate expression is second order, r = kc2
A. The units of the second-order rate

constant are (vol/mol)(time)−1. The material balance and initial condition are

dcA
dt

= −kc2
A, cA(0) = cA0

2Often the output times in tout are the same as the requested times in time, but these may not be the same
if the ODE solver experiences numerical difficulties solving the ODEs.
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Find the analytical solution to this differential equation. Plot this solution and the
first-order solution for cA0 = 1 mol/L and k = 1 min−1 for the first-order reaction and
k = 1 L/(mol min) for the second-order rate constant.

Exercise 4: More ODE solving in Matlab

Consider again the second-order, irreversible reaction taking place in a well-stirred batch
reactor

A
k
-→ B r = kc2

A

Compute the solution numerically using Matlab’s ode15s program for the parameter val-
ues given in Exercise 3. Compare the numerical and analytical solutions. Plot the relative
error in the two solutions versus time. Relative error is defined as

e(t) = x(t)− x̃(t)
x(t)

in which x(t) is the true solution and x̃(t) is the approximate numerical solution.

Exercise 5: Radioactive decay with fast intermediate species

Consider again the radioactive decay reactions in Example 1. Examine the species con-
centrations depicted Figures 5–6, and the magnitudes of the rate constants and provide
responses to the following questions and statements.

(a) What single reaction do you suppose can accurately represent the complete model
with two reactions? (hint: think about the quasi-steady-state assumption)

(b) Solve the mass balances for this single reaction and plot the concentrations of radium,
radon, polonium and alpha particles versus time. Compare your solution for this
single reaction model to the results for the two-reaction case displayed Figures 5–6.
Comment on any differences between the two solutions.

Exercise 6: Writing your own simple ODE solver: Euler’s method

In this exercise, you are asked to write your your own ODE solver using the Euler method.
Let’s provide your ODE solver by defining the following function

function [tout, x] = euler (@oderhs, nsteps, h, x0)

in which oderhs is the name of the function that defines the right-hand side, nsteps is the
number of time steps, h is the step size in the Euler method, and x0 is the initial condition.
The function returns tout, the vector of times at which the solution was computed and x,
a matrix in which the ith row is the solution vector x at the ith time in vector tout. We
solve the ODEs by calling euler, much like we called the Matlab solver ode15s.
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Use the same form for the user-provided right-hand side function oderhs as used by
ode15s; that is assume the ODE is of the form

dx
dt
= f(t, x) function retval = oderhs(t, x)

(a) Write function euler to implement Equations 15 defining the explicit Euler method.

(b) Test your ODE solver by calling it for a first-order, irreversible reaction with rate
constant and initial condition parameters given in Exercise 2. Use the following step
sizes

h = 0.5 h = 0.1 h = 0.01 h = 0.001

You can reuse the firstorder function that you wrote in Exercise 1 for evaluating
the right-hand side of the ODE.

(c) Plot all four cA(t) numerical solutions on the same graph and label the four curves.
Replot the four solutions using a log scale on the y-axis. Which step size do you
recommend for solving this problem?

Exercise 7: Complex dynamic behavior with nonlinear ODEs. Belousov-Zhabotinsky
reaction.

Belousov and Zhabotinsky discovered chemical reactions that can remain far from equi-
librium for long periods of time. The following mechanism due to Field and Noyes (1974)
while working at the University of Oregon, known as the Oregonator, is the simplest model
that explains some of the observed behavior

A+ Y -→ X+ P r1 = k1AY (16)

X+ Y -→ 2P r2 = k2XY (17)

A+ X -→ 2X+ 2Z r3 = k3AX (18)

2X -→ A+ P r4 = k4X2 (19)

B+ Z -→ 1
2

fY r5 = k5BZ (20)

in which A=HBrO−3 , B is the sum of all oxidizable organic species, P=HOBr, X=HBRO2, Y=Br,
and Z=metal oxides. We may assume the A and B concentrations are much higher than the
intermediates X, Y, and Z and can be assumed constant at A=0.06M and B=0.02M.

We wish to solve this model for the intermediates using the following values of rate
constants and initial conditions

dX
dt
= α(Y −XY +X − βX2)

dY
dt
= (Z −XY − Y)/α

dZ
dt
= γ(X − Z)

15
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Figure 8: Complex dynamic behavior of the Oregonator model of the Belousov-Zhabotinsky
reaction.

in which

α = 77.27 β = 8.375× 10−6 γ = 0.161

X0 = 4 Y0 = 1.1 Z0 = 4

Be prepared, your solution is going to look something like Figure 8. In order to capture the
sudden transient occurring at about t = 303, try using the following times for reporting
the ODE solution in your call to ode15s

time = [0, ...
(logspace (-1, log10 (303), 300)), ...
(logspace (log10 (303.01), log10 (500), 300))]’;

echo time back to the command line so you can see where these time points are placed.
The command logspace is handy for dividing an interval evenly on a log scale. Contrast
its behavior to the command linspace.

Exercise 8: More oscillations. Coupled mass and energy balance in a continuous well-
stirred reactor. Default error tolerances in Matlab’s ode15s unreliable

Consider again the irreversible reaction

A
k
-→ B r = kcA

16
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The mass and energy balances for a continuous-stirred-tank reactor (CSTR) are given by (Rawl-
ings and Ekerdt, 2012, p. 298)

dcA
dt

=
cAf − cA
τ

− kcA (21)

dT
dt
= UoA
VRρĈP

(Ta − T)+
Tf − T
τ

− ∆HR
ρĈP

kcA (22)

k(T) = kme−E(1/T−1/Tm) (23)

in which cA is the reactor A concentration and T is the reactor temperature. Notice the
rate constant k also depends on the reactor temperature. Including the energy balance to
describe the reactor temperature allows the reactor to exhibit complex behavior. We wish
to solve the model for the following parameter values

Param. Value Units
Tf 298 K
Ta 298 K
Tm 298 K
ĈP 4.0 kJ/(kg K)
cAf 2.0 kmol/m3

km(Tm) 0.004 min−1

E 1.5× 104 K
ρ 103 kg/m3

∆HR −2.2× 105 kJ/kmol
UoA/VR 340 kJ/(m3 min K)
τ 73.1 min

(a) Solve the two differential equations describing the reactor from the following initial
condition using Matlab’s default parameters

cA0 = 0.36 mol/L T0 = 315 K

Plot cA, T versus t for this solution out to t = 20τ .

Next plot cA versus T for this solution. This type of plot is called a phase plot or
phase portrait. Notice it gives you a clear indication when a system is approaching a
persistent oscillation known as a limit cycle.

(b) Next we tighten the absolute and relative error tolerance for ode15s using the odeset
function. Learn more about this function by typing at the command line

help odeset

The machine precision is stored in the variable eps. Try setting both the absolute
and relative error tolerances to the square root of the machine precision. The odeset
command is
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opts = odeset (’AbsTol’, sqrt (eps), ’RelTol’, sqrt (eps));

After setting opts, you pass this extra argument to the ODE solver to use the tighter
tolerances with

[tout, x] = ode15s (@oderhs, tout, x0, opts);

Resolve the ODEs with the same initial conditions and the tighter tolerances. Plot
the solution with both loose and tight tolerances on the same graph. What do you
conclude about Matlab’s default error tolerances?

(c) Try your function euler on this problem. Can you obtain an accurate solution? If so,
what step size h do you recommend? Note: I have not tried this part myself so I am
not sure what happens here.

(d) Resolve the Oregonator with tighter tolerances and compare to your solution in Exer-
cise 7. Do you notice a difference in the two solutions?

Exercise 9: Estimating rate constant and activation energy from rate constant measure-
ments at different temperatures

Assume a reaction rate has been measured at several different temperatures in the range
300 K ≤ T ≤ 500 K. Model the rate (rate constant) as

k = k0 exp(−E/T) (24)

in which k0 (min−1) is the pre-exponential factor and E (K) is the activation energy scaled
by the gas constant. To make the estimation problem linear, transform the data by taking
the logarithm of Equation 24

lnk = lnk0 − E/T

(a) Estimate the parameters lnk0 and E using least squares given the following single
experiment consisting of nine rate constant measurements at the following tempera-
tures

T k
300 0.01658
325 0.06151
350 0.09822
375 0.2751
400 0.9982
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425 2.113
450 4.401
475 4.505
500 13.42

What are the least squares estimates of lnk0 and E for this experiment?

(b) Plot the data and least squares fit on two plots: one plot of k versus T and a separate
plot of lnk versus 1/T . How well does Equation 24 represent these data?

(c) Next we wish to analyze the following 50 replicate experiments in which each ex-
periment consists of nine measurements of k at different T . The first four of these
experiments are shown here

T1 k1 T2 k2 T3 k3 T4 k4
303 0.01145 302 0.0175 302 0.01208 301 0.00955
323 0.0483 321 0.04742 326 0.06483 329 0.05799
351 0.167 345 0.1456 354 0.2289 354 0.1729
376 0.3197 379 0.5643 375 0.436 376 0.2612
402 1.221 396 0.9718 401 0.877 404 0.8787
429 1.278 425 2.166 427 2.152 422 1.052
453 3.844 447 2.853 452 2.354 448 3.882
479 4.519 476 5.098 477 4.685 475 5.931
501 13.8 504 12.05 496 8.29 496 6.235

Download these data from the file

kt lotsmeas.dat

Calculate a least squares estimates for each experiment. Plot the 50 estimates using
the estimate of lnk0 as the abscissa and the estimate of E as the ordinate.

(d) Next combine all 50 experiments into one dataset of k, T values and estimate lnk0

and E using all 450 measurements. What are the values of the estimates?

(e) Plot all 450 measurement and the least squares fit on two plots: one plot of k versus
T and a separate plot of lnk versus 1/T . How well does Equation 24 represent all of
the measurements.

Exercise 10: Multiple steady states. Coupled mass and energy balance in a continuous
well-stirred reactor

Consider again the irreversible reaction

A
k
-→ B r = kcA
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The mass and energy balances for an adiabatic (no heat transfer to the surroundings),
continuous-stirred-tank reactor (CSTR) are given by (Rawlings and Ekerdt, 2012, p. 298)

dcA
dt

=
cAf − cA
τ

− kcA
dT
dt
=
Tf − T
τ

− ∆HR
ρĈP

kcA

k(T) = kme−E(1/T−1/Tm)

in which cA is the reactor A concentration and T is the reactor temperature. Notice the
rate constant k also depends on the reactor temperature. Including the energy balance to
describe the reactor temperature allows the reactor to exhibit complex behavior. We wish
to solve the model for the following parameter values

Parameters Values
τ 10 min
cAf 2 kmol/m3

Tf 298 K
km 0.001 min−1

E 8000 K
Tm 298 K

∆HR/(ρĈP) −75 m3K/kmol

(a) Solve the reactor differential equation model for the following 11 initial conditions:

cA(0) = cAf
T(0) =

[
300 310 320 330 340 350 360 370 380 390 400

]
Plot all eleven solutions cA(t) versus t on one graph and all eleven solutions T(t)
versus t on a second graph.

Some of these initial conditions should lead to an extinguished steady state (low con-
version, low temperature), and some of the initial conditions should lead to an ignited
steady state (high conversion, high temperature).

(b) If you wanted to start the rector full of feed, what is the smallest temperature at which
you could start the reactor and still achieve the ignited steady state?

Exercise 11: Benzene pyrolysis and stopping time

Hougen and Watson (1947) analyzed the rate data for the pyrolysis of benzene by the
following two reactions. Diphenyl is produced by the dehydrogenation of benzene,

2C6H6
k1-⇀↽-
k−1

C12H10 +H2 (25)
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Triphenyl is formed by the secondary reaction,

C6H6 + C12H10
k2-⇀↽-
k−2

C18H14 +H2 (26)

The reactions are assumed to be elementary so that the rate expressions are

r1 = k1

(
c2
B −

cDcH
K1

)
r2 = k2

(
cBcD −

cTcH
K2

)
(27)

in which the subscripts, B, D, T and H represent benzene, diphenyl, triphenyl and hydro-
gen, respectively. The reactor operates at 1033 K and 1.0 atm. The rate and equilibrium
constants at T = 1033 K and P = 1.0 atm are given in Hougen and Watson,

k1 = 7× 105 L/mol · hr K1 = 0.31

k2 = 4× 105 L/mol · hr K2 = 0.48

The reactor is initially full of benzene. The gas constant is R = 0.08205 lit atm/mol K.

(a) Plot the mole fractions of the four components versus time.

(b) Use the ODE solver to calculate precisely the time required to reach 50% total conver-
sion of the benzene.

Exercise 12: Chemical reaction in a batch reactor — limiting reagant

The reaction of interest is the dehalogenation of a dihalogenated starting material to form
the divinyl product, which is used in photographic film production (Rawlings and Ekerdt,
2012). It is assumed that the halide groups (X) are removed from the starting material in
two consecutive reactions:

A+ B
k1-→ C+ B·HX

C+ B
k2-→ D+ B·HX

A XH2CCH2RCH2CH2X

B Organic base

C H2C CHRCH2CH2X

D H2C CHRCH CH2

The dihalogenated starting material (A) loses HX to the base (B) to form the mono-halogenated
intermediate (C), which subsequently loses HX to the base to produce the desired final prod-
uct (D).

(a) Write down the differential equations describing the concentrations of A, B, C, and D
for this reaction in a well-stirred batch reactor of constant volume.
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(b) Solve the differential equations numerically for the following values of initial concen-
trations and rate constants

cA0 = 2.35 mol/L cB0 = 3.5 mol/L cC0 = 0 cD0 = 0

k1 = 25.0 L/mol · hr k2 = 12.5 L/mol · hr

Plot the concentrations of all species versus time with (i) standard axes and (ii) with a
logarithmic scale on the y-axis (semilog plot). Label A, B, C and D curves on the plot.
Choose an appropriate time interval for the solution of the differential equations to
display the final steady state of the system.

(c) What species are present at long times? To increase the production of final product
D, what initial reactant concentration must be increased? Why?
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